【付録】

「PRISMA 声明チェックリスト：機能性表示食品のための拡張版」に基づく適正な研究レビューの記述例
目次

1. タイトル (#1) .. 1
2. 構造化抄録 (#2) .. 1
3. 論拠 (#3) .. 2
4. 目的 (#4) .. 2
5. プロトコールと登録 (#5) ... 2
6. 適格基準 (#6) ... 3
7. 情報源 (#7) .. 4
8. 検索 (#8) .. 5
9. 研究の選択 (#9) ... 5
10. データの収集プロセス (#10) ... 6
11. データ項目 (#11) ... 6
12. 個別の研究のバイアス・リスク (#12) .. 6
13. 要約尺度 (#13) .. 10
14. 結果の統合 (#14) .. 10
15. 全研究のバイアス・リスク (#15) .. 11
16. 追加的解析 (#16) .. 12
17. 研究の選択 (#17) .. 12
18. 研究の特性 (#18) .. 12
19. 研究内のバイアス・リスク (#19) ... 13
20. 個別の研究の結果 (#20) ... 14
21. 結果の統合 (#21) .. 14
22. 全研究のバイアス・リスク (#22) ... 14
23. 追加的解析 (#23) .. 15
24. エビデンスの要約 (#24) ... 15
25. 限界 (#25) ... 16
26. 結論 (#26) ... 16
27. 資金源 (#27) .. 17
本付録は、新たに研究レビュー（以下「SR」という。）を実施して機能性表示食品の届出をする際に記述すべき内容をその例とともにまとめている。また、この付録は既に届出済みの食品について、届出の修正をする場合にも活用できるものになっている。届け出られる SR 全体の質を高めるために作成したものであり、届出資料作成時参考としていただきたい。

なお、本付録の内容は報告書本文で掲載した「PRISMA 声明チェックリスト：機能性表示食品のための拡張版」に基づいているため、各項目に対応するチェックリストの小項目番号を併記した。

1. タイトル (#1)
・定性的な場合は次のように記述する。
【記述例】「・・・に関する SR」
・メタアナリシスを含む場合には次のように記述する。
【記述例】「・・・に関するメタアナリシスを含む SR」

商品名、機能性関与成分名、表示しようとする機能性、作成日、届出者名についても記述する必要がある。表示しようとする機能性については、PI(E)COS の検証結果に基づき、過大解釈をせずに適正に記述し、性・年代（場合によっては部位も）を十分に考慮する必要がある。

2. 構造化抄録 (#2)
本文の内容を、構造化抄録において簡潔に記述する。各項目で記述すべき内容と記述例は以下のとおりである。

○「目的」
・背景を簡単に一文程度で記述する。
【記述例】■■の作用機序は知られているが、■■における有効性は明確でなかった。
・PI(E)COS を反映した明確な目的を記述する。
【記述例】
そこで、本 SR は、■■という参加者を対象として、●●mg/日を摂取することによる■■機能向上の有効性を■■と比較して明らかにするために、ランダム化並行群間試験とランダム化クロスオーバー試験によって示された研究に限定して実施した。

○「方法」
・データ源、研究の適格基準（PI(E)COS など）、研究の質評価方法（バイアス・リスク、非直接性、非一貫性、不精確など）、統合方法（メタアナリシス）などを記述する。
・UMIN-CTR、PROSPERO 等の事前登録システムに登録している場合、SR の登録番号を示す。
○「結果」
・主要アウトカムを中心とした主な結果、さらにメタアナリシスを実施した場合には統合結果を示す。

【記述例】
■■は、1日あたり●●mg摂取することで、■■（男性、女性、青壯年、若年者、等の属性）の■■機能を向上させる可能性が高いことが示された。

○「結論」
・結果から得られた重要な知見の意味合いを示す。特に限界については詳細に記述する。

【記述例】
対象とした参加者は、ほとんどの■■（属性）であり、対象部位も■■に限られているので、それ以外の属性（性・年代等）や他の部位への有効性は現時点では不明である。

3. 論拠（#3）
機能性関与成分、最終製品の食経験について、主要な参考文献を（場合によっては統計資料も）用いて記述する。また、検証されている作用機序や、人を対象とした研究の動向についても、主要な参考文献を示して記述する。これらを踏まえて、リサーチ・クエスチョンを簡潔に述べる。

4. 目的（#4）
PI(E)COSを示して明確に記述する（構造化抄録の目的と同一）。

5. プロトコールと登録（#5）
プロトコールの決定日を記述するとともに、事前登録情報について記述する。

【記述例】
本SRのプロトコールは、●●年●●月●●日に全ての研究者及び研究協力者の同意の上で決定し、そのとおりに研究を実施した。また、「UMIN-CTR（No. ●●）」に、●●年●●月●●日に、本SRのプロトコールを登録した。弊社の狙いが競合他社に即時に伝わることは営業利益を損ねる可能性が高かったため、公開日は登録してから6か月後の●●年●●月●●日とした。
6. 適格基準（#6）

PI(E)COSの箇条書き形式で本文中に明確に記述する。介入の期間（観察・追跡期間も含む）も記述する。報告の特性として、言語（無制限、日本語と英語など）、発表形態（査読付き論文、原著論文、学会発表録は除くなど）も記述する。

【記述例】
適格基準となるPI(E)COSの設定は以下とした。

P(Participants)：参加者
未成年者、妊娠婦（妊娠を計画している者を含む）及び授乳婦を除いた、疾病に罹患していない者とした。

I(Interventions)；介入 又は E(Exposures)；曝露
■■を摂取することを介人とした。研究の介入期間は8週間以上、追跡期間は無制限とした。

C(Comparators)：比較対照群
比較対照群は、何も介入を行わない群や他の類似成分との比較、又は・・・を含まない食品で代替する対照群とした。また、■■の摂取量の低・中程度など、濃度の低い群も対照群とした。

O(Outcomes)：評価項目
■■を主要アウトカムとし、■■を副次アウトカムとした。

S(Study design)：研究デザイン
ランダム化並行群間比較試験とランダム化クロスオーバー試験を対象とした。また、発表の言語は無制限とした。発表形態は、原則として原著論文とし、短報や報告という種類の論文も内容の特定が可能な場合は採用することにした。学会発表抄録（会議録）は、記述内容が十分ではないと考えられるため除外した。掲載雑誌の査読の有無は問わなかった。出版バイアスの回避のために、臨床試験登録データベースに掲載された結果を含む研究も対象とした。グレー文献については、博士論文や政府機関などの統計白書に類似する報告書で詳細な内容を特定できるものは採用した。
7. 情報源（#7）

レビュー対象論文が適正に収集されているかの判断に必要となるため、使用した文献検索データベース、臨床試験登録等のデータベースの情報について記述する。また、ハンドサーチや著者への連絡等を行った場合は、その旨記述する。ハンドサーチや著者への連絡は、SRの正確性を高めることにつながるため、推奨される。

【記述例】

1）文献検索データベース

研究論文のデータベースとして、医中誌Web、PubMed(MEDLINE)、JDream III、Cochrane Database of Systematic Reviews、Database of Abstracts of Reviews of Effects、Cochrane Central Register of Controlled Trials、Web of Science、Scifinderを用いて、網羅的に収集した。

2）臨床試験登録及びシステマティック・レビューのデータベース

International Clinical Trials Registry Platform (ICTRP)、International Prospective Register of Systematic Review (PROSPERO)、University Hospital Medical Information Network-Clinical Trials Registry (UMIN-CTR)を用いて、網羅的に収集した。

各データベースともに、開設又は搭載されている最初の時点から各検索日までに公表された研究を検索対象とした。

検索は、臨床・疫学研究に携わり、SRにおける検索経験が豊富な図書館司書が実施した。

3）ハンドサーチとその他の検索

●●年●●月●●日に、Aが本企業図書室にて、■■（雑誌名）の第●●巻●●号から第●●巻●●号までをハンドサーチした。

また、●●年●●月●●日に、Bが国立国会図書館にて、■■（雑誌名）の第●●巻●●号から第●●巻●●号までをハンドサーチした。

さらに、上記のデータベース検索において、■■（論文名）という事前に把握していた論文が何らかの理由で漏れていた。候補論文として適格基準と照合した結果、基準に合致していたため採用した。

4
8. 検索（#8）
検索を再現できるように、検索を実施した文献データベースについて、電子的な検索式及び検索結果や検索戦略を正確に記述する（用いた全ての検索について、制限も含めて記述する）。検索でヒットした文献数が余りに多いためやむを得ず絞込みを行った場合は、正確に絞込みの条件を記述する（研究デザインは■■を対象としたなど）。検索対象範囲や対象外とした資料も記述する。また、検索に関する資格（司書や検索技術者1,2級など）やSR検索経験等、検索者の特性も記述する。

【記述例】
使用したそれぞれのデータベースの検索式・アルゴリズムは、別紙様式（V）-5に示した。
検索の基本姿勢として、網羅性を重視したが、検索でヒットした文献数が余りに多いためやむを得ず研究デザインを■■に限定して絞込みを行った。検索対象範囲は●●年〜●●年（検索時点）とした。会議録は対象外とした。
検索は司書資格（検索技術者1,2級）を持ち、SRの検索経験が豊富な◆◆が行った。

9. 研究の選択（#9）
研究選択のプロセスを明確に記述する。
(1) スクリーニング方法に関する記述（#9a）

【記述例】
論文選択において、第1次スクリーニング（抄録確認レベル）と第2次スクリーニング（本文レベル）は、ともにAとBが独立して実施した。その後、2人で照合して、一致していない論文については両者が協議の上で決定した。それでも不一致である場合には、Cに判断を委ねた。

(2) 適格性に関する記述（#9b）

【記述例】
該当する論文の選択は、適格基準（#6）に基づき、スクリーニングを実施した。

(3) 採択基準に関する記述（#9c）

【記述例】
まず異質性の回避のため、PICOSがほぼ同一であることと、バイアス・リスクが中程度よりも低い論文を採用することとした。ただし、介入期間や成分の濃度が大きく異なる場合には、それぞれ2分割しての感度分析も併せて実施することとした。
10. データの収集プロセス（#10）
2名以上が独立してデータ収集を行うことや、記述不足の箇所についての対象論文の著者から
のデータ入手・確認に関するあらゆるプロセスを明確に記述する。

【記述例】
別紙様式（V）-7に採用した文献をまとめた。また、別紙様式（V）-11aに、抽出したデ
ータをアウトカムごとにまとめた。この作業は、AとBが独立して実施し、不一致がある
場合には協議して決定した。さらに疑義がある場合には、Cに判断を委ねた。
著者への問合せとして、論文中のデータがグラフのみで、平均値と標準偏差（誤差）が
不明な場合や、隠蔽、ドロップアウト、コンプライアンスの記述がなかった論文の場合に
は電子メールで確認した。ただし、著者からの回答がない、又は退職に伴い連絡先が不明
なケースもあったので、その旨を別紙様式（V）-7に記述した。)

11. データ項目（#11）
全てのデータ、仮定、単純化した事項をリストアップし定義する。

【記述例】別紙様式（V）-7を用いて記述した。

12. 個別の研究のバイアス・リスク（#12）
個別研究のバイアス・リスク評価に用いた方法と、あらゆるデータ結合においてこの情報をど
のように使用したかを記述する。

(1) バイアス・リスク（#12a）

【記述例1 バイアス・リスクの評価方法】
研究の質とバイアス・リスク評価には、別紙様式（V）-11aを用いた。
具体的には、①ランダム化が行われているか、②割付の隠蔽が行われているか、③参加
者の属性が記述されているか、④アウトカム評価者について記述されているか、⑤ITT解
析、FAS解析、PPS解析が行われているか、⑥不完全なアウトカムが含まれていないか、
⑦選択的なアウトカムの報告がなされていないか、⑧その他のバイアスの8項目によって
厳格に評価を行った。

【記述例2 バイアス・リスクに基づく論文の除外方法】
各項目バイアスは、バイアスが「ある」、「不明」、「記述なし」の場合には－1点、「ない」
の場合は0点と評価し、該当しない項目には、セルに斜線を施した。全体のバイアス・リ
スクのまとめは、別紙様式（V）-7の8項目の合計とし、●点から●点を高バイアス、●点
から●点を中バイアス、●点から●点を低バイアスとした。なお、高バイアスとなった研
究はエビデンスの総括に深刻な影響を及ぼす可能性があるため当該論文を分析から除外し

6
【記述例 3 バイアス・リスクに基づく論文の除外方法（観察研究の場合）】

コホート研究とケース・コントロール研究についてのバイアス評価は、GRADE につながり、次の 5 項目により実施した。

① 適切な適格基準を確立していない、又は適用していない（対照群の組入れ）
・ケース・コントロール研究の対照群の選定の際に、過小（アンダー）又は過大（オーバー）マッチング注
1 になっている
・コホート研究において、曝露した人と曝露していない人が背景の異なる集団から選出されている

② 曝露及びアウトカムの双方における測定の不備
・曝露やアウトカムの測定が不確実である（ケース・コントロール研究の場合には思い出しバイアス）
・コホート研究で、曝露群と非曝露群で曝露内容やアウトカム調査方法が異なっている

③ 交絡が十分に調整されていない
・コホート研究で、全ての既知の予後因子を測定していない、若しくは精確に測定していない
・曝露群と非曝露群で予後因子や背景因子が一致していない、又は解析の際にそれらの統計学的な調整がされていない

④ 追跡が不十分又は観察期間が短すぎる

⑤ その他のバイアス
注 1 検討したいアウトカムと関係する因子について対照群と曝露群との間に差が生じないように対照群を選定すること。アンダー（過小）マッチングは、対照群と曝露群に当該因子について差が生じたことで、曝露とアウトカムとの関連が分かりにくくなることを指す。一方、オーバー（過剰）マッチングはマッチングする必要のない属性についてもマッチングを行うことで対照群のサンプル数を確保しづらくなることを指す。

判断基準として、●項目以上該当する場合には高バイアス、●〜●項目該当する中バイアス、●〜●項目該当する場合には低バイアスとし、高バイアスの研究は分析から除外し、中・低バイアスの研究を採用した。

【記述例 4 バイアス・リスクの一致度と適正性】

質評価は、A と B が独立して実施し、不一致がある場合には協議して決した。さらに、疑義がある場合には、C に判断を委ねた。また、一致率と 係数を算出した。 係数の値による一致度の判断基準は、以下のように設定した。

0.0 〜 ● ： 低い一致 (poor agreement)
● 〜 ● ： 中等度の一致 (moderate)
● 〜 ● ： 高い一致 (good to fair)
● 以上 ： かなり高い一致 (excellent)

＜注意＞

独立した 2 名の評価の一致度が高いことは重要だが、たとえ一致度が高くとも、そもそも両者の評価が誤っていると問題である。このような事態を防ぐために、評価者は質評価に関する事前の十分なトレーニングが必要である。もし不安がある場合には、EBM や臨床・疫学研究の専門家による指導を受けることが推奨される。
(2) 非直接性（#12b）
非直接性（Indirectness）とは、当該臨床研究が当該SRに直接関係がないことを意味する。例えば、研究の対象者の属性や、介入・対照、アウトカムが無関係の場合が考えられる。したがって、PI(E)COの観点から、非直接性の評価方法を記述する。評価の結果、非直接性があるとされた論文は、レビュー対象から除外することが望ましい。

【記述例】
採用論文が本SRのPI(E)COと合致していないかどうか（非直接性）は、A、Bが評価した。採用論文の内容と本SRのPI(E)COとの関係が直接的でない場合には(-1)、直接的である場合には(0)とラベルリングした。評価対象論文全体の非直接性については、各項目の「直接的でない(-1)」の合計数で次のように評価した。0〜●項目が該当する場合、「非直接性なし」、●〜●項目の場合は「非直接性あり」とした。これらをアウトカムごとにそれぞれ別紙にまとめた。この作業は、AとBが独立して実施し、不一致がある場合には協議して決した。さらに疑義がある場合には、Cに判断を委ねた。

(3) 不精確（#12c）
不精確（Imprecision）とは、当該研究における例数が少ない、又はアウトカムであるイベント数が少ないために、結論の精度を表す95%信頼区間が大きくならないことを指す。明確な基準はないが、厳格にし過ぎると除外が増えることから、以下の記述例に示すような考え方もあり得る。

【記述例】
評価方法は例数（又はイベント数）と主要アウトカムを基に、メタアナリシスの有無にかかわらず、次のように定義した。その際、95%信頼区間が著しく広い研究も不精確と評価した。
また、3つの項目の平均値●●以上を閾値として、当該研究の精確・不精確を評価した。

＜介入研究の場合（RCT等）＞

<table>
<thead>
<tr>
<th>項目</th>
<th>(0) 精確</th>
<th>(-1) やや不精確</th>
<th>(-2) 不精確</th>
</tr>
</thead>
<tbody>
<tr>
<td>アウトカムが連続量の場合</td>
<td>全部で●例以上</td>
<td>全部で●例以上</td>
<td>●例未満</td>
</tr>
<tr>
<td>アウトカムがイベントの場合</td>
<td>全部で●イベント以上</td>
<td>全部で●イベント以上</td>
<td>●イベント未満</td>
</tr>
<tr>
<td>95%信頼区間の幅</td>
<td>十分狭い</td>
<td>やや広い</td>
<td>かなり広い</td>
</tr>
</tbody>
</table>

合計点（非該当は加算せず）

＜コホート研究、ケース・コントロール研究の場合＞

<table>
<thead>
<tr>
<th>項目</th>
<th>(1) 精確</th>
<th>(-1) やや不精確</th>
<th>(-2) 不精確</th>
</tr>
</thead>
<tbody>
<tr>
<td>アウトカムが連続量の場合</td>
<td>全部で●例以上</td>
<td>全部で●例以上</td>
<td>●例未満</td>
</tr>
<tr>
<td>アウトカムがイベントの場合</td>
<td>全部で●イベント以上</td>
<td>全部で●イベント以上</td>
<td>●イベント未満</td>
</tr>
<tr>
<td>95%信頼区間の幅</td>
<td>十分狭い</td>
<td>やや広い</td>
<td>かなり広い</td>
</tr>
</tbody>
</table>

合計点（非該当は加算せず）
非一貫性（#12d）

非一貫性は、全体の研究を通じての評価であるため、本来、#15 における項目であるが、本制度では別紙様式（V）-13 に他の評価とともに一括記述することから、それに合わせて便宜的にここで記述する。評価の結果、一貫性がないと判断した場合には、判断基準を記述し、慎重に考察する必要がある。

【記述例1 メタアナリシスを実施したSRの場合】

メタアナリシスにおいて、効果推定値に基づき、異質性の検定や I² 値で求めた。判断のために以下の 2 基準を用いた。

1) 異質性の検定（二択の帰無仮説：全研究で差がない）で p 値が小さい
2) I² 値（研究間の異質性を示す）が高い。I² 値の解釈は次のとおりとした。

0.0 〜 ●%	(might not be important: 重要でない異質性)
● 〜 ●%	(may represent moderate heterogeneity: 中等度の異質性)
● 〜 ●%	(may represent substantial heterogeneity: 大きな異質性)
● 〜 ●%	(considerable heterogeneity: 高度の異質性)

【記述例2 メタアナリシスを実施していないSRの場合】

そもそも非一貫性は、各研究間のばらつきを示すもので、本来はメタアナリシスでの効果推定値によって判断するが、メタアナリシスを含まない定性的な評価においての判断基準はない。そこで、メタアナリシスを行えなかった場合、各論文において有意な効果があった（Positive (P)）、若しくは、有意な効果がなかった（Negative (N)）の 2 値として各アウトカムを取り扱い、次のような明確な基準を設定して評価した。

報告数は 2 編以上として共通して当てはめ、各論文の中での一致度を百分率で算出した。有効性としての P に着目し、その一致度の検出の逆に不一致度を 3 段階で解釈するように定義した。一致度は、50%〜100%の範囲となり、例えば、●●編中●●編が P で、N が●●編ならば●●%となる。前述の一致度が、●●%〜●●%を「非一貫性：高」(-2)、●●%〜●●%を「非一貫性：中」(-1)、●●%〜●●%を「非一貫性：低」(0)と設定した。もし、報告数が 1 編のみの場合には、「非一貫性：高」(-2) とあらかじめ設定した。

この作業は、A、B が独立して実施し、不一致がある場合には協議して決した。更に疑義がある場合には、C に判断を委ねた。
13. 要約尺度（#13）
主要アウトカムと副次アウトカムとして設定した要約尺度を記述する。連続変数の場合は、平均値の群間差（difference in means）を機能性評価の要約尺度にすることが多い。イベントの場合は、リスク差（risk difference）、リスク比（risk ratio）、オッズ比（odds difference）、率比（rate ratio）などを機能性評価の要約尺度にすることが多い。また、イベント発現までの時間の場合は、メジアン生存時間（median survival time, MST）よりもハザード比（hazard ratio）を要約尺度にすることが望ましい。
また、特に注意を要する事項として、主要アウトカムが1つではなく、同じようなアウトカム（メンタルの評価などで類似項目が多数ある：うつ、怒り、緊張、活気など）を評価している項目について検定を繰り返すこと、又は同じ項目の多時点（4週後、8週後、12週後、16週後）で検定を繰り返すこと、これらは検定の多重性と称され、誤って統計学的に有意な結論を生む可能性が高まる。したがって、このようなときには多重性の問題を考慮しなければならない。（第5章第2項不適正・研究倫理に反すると考えられる注意事項を参照）
【記述例】
主要アウトカムの・・・と副次アウトカム・・・は全て連続変数であるため、群間の平均値差を別紙様式（V）-11と別紙様式（V）-13にまとめ、本文中の結果にも示した。

14. 結果の統合（#14）
複数の研究結果を統合した場合には、データの取扱いと研究結果の統合の方法を各メタアナリシスの一致性の尺度も含めて記述する。
(1) 研究結果の統合方法の記述（#14a）
【記述例】
メタアナリシスは、PICOSからの判断で異質性がないRCT5編に対して、欠損情報がないのを確認の上で、併合方法は変量効果モデルを用いて実施した。研究協力者Dが、RevMan 5を用いて実施した。
(2) 一致性の尺度の記述（#14b）
【記述例】
フォレストプロットによるP値から異質性（非一貫性の評価：#12d）を評価した。また、ファンネルプロットから出版バイアスを評価した。
15. 全研究のバイアス・リスク（#15）

累積するエビデンスに影響を及ぼし得るバイアス・リスク（「出版バイアス（出版されなかったために解析されなかった研究の影響）」「選択的報告バイアス（検索された研究の中で一部除外して解析した影響）」など）の評価を記述する。

(1) 臨床試験登録の検索（#15a）
【記述例】
出版バイアスを回避するために、介入方法（I）を考慮して、UMIN-CTR と ICTRP のキーワード検索を行った。

(2) 著者への問合せ（#15b）
【記述例】
ランダム化と盲検化に関して不明確な報告がなされていた場合は、著者に問い合わせ、問合せをした事項と得られた結果とを別紙様式（V）-11 に記述した。

(3) （事後メタアナリシス時）ファンネル・プロット（#15c）
【記述例】
ファンネル・プロットから出版バイアスを評価した。

(4) 研究内での選択的報告（#15d）
【記述例】
非一貫性が高かった RCT●編を除外したが、サンプルサイズが対象となった RCT●編の中でも最も大きかった。

(5) その他のバイアス（上記以外に想定されるバイアス・リスクがあれば記載）
【記述例】
その他のバイアスについては、報告が弊社だけの研究が複数あることから、それらの結果と、他の国内外の結果を 2 分割して、同等性を考察した。
16. 追加的解析（#16）
感度分析やサブグループ解析、メタ回帰分析などを実施した場合には、SR を実施する前にそれらの解析の必要性を認識し、計画的に実施したことを含めて記述する。ただし、後付け的な解析ではないことを確実に担保するには、事前にプロトコールを登録することが第一である。

【記述例 1】
事前の研究計画段階で設定したとおり、サブグループ解析として、介入した成分の濃度の高い研究と低い研究を 2 分割して、それぞれでメタアナリシスを実施した。実際には、介入した成分の濃度が ●mg/dL 以上の論文が●編、●mg/dL 未満の論文が●編であった。

【記述例 2】
事前の研究計画段階で設定したとおり、サブグループ解析として、軽症者と疾病に罹患していない者を 2 分割してメタアナリシスを実施した。具体的には、●●において●●～●●mmHg の群だけの研究結果を統合したメタアナリシスと、●●mmHg 未満の群だけを統合したメタアナリシスを実施した。

17. 研究の選択（#17）
スクリーニングした研究、適格性を評価した研究、レビューに含めた研究それぞれの数と各段階での除外理由をフローチャートで示す。

【記述例】
対象論文の抽出までのフローチャートを別紙様式（V）-6 に示した。文献検索データベースにより検索された文献は、●●編であった。1次スクリーニングにて●●編に絞り込み、さらに2次スクリーニングを実施し、前述の条件に合致する論文を選択した結果、対象研究は●●編となった。採用文献リストは別紙様式（V）-7 にまとめた。なお、2次スクリーニングにて除外した研究については、その理由とともに、除外文献リストを別紙様式（V）-8 にまとめた。

18. 研究の特性（#18）
各研究について、どのデータを抽出したか、研究のサイズ、PICOS、追跡期間と出典を示す。

【記述例】
抽出された対象研究●●編は、別紙様式（V）-7 に示したように以下の特徴があった。●●らの研究（採 1）は、英語で記述されていた。30～80 歳の疾病に罹患していない日本人男女●●名を参加者とし、機能性関与成分の●●を 1 日当たり●●量で、12 週間の介入後、4 週間の観察期間を設けていた。●●名中、●●名（●●%）が試験を完了していた。介入群の●●名が下痢でドロップアウトしていた。コンプライアンスの記述はなかった。
19. 研究内のバイアス・リスク（#19）

各研究のバイアス・リスクのデータと、もしあれば、あらゆるアウトカムレベルでの評価を示す（#12aに対応）。また、2名の独立した評価の一致度を示す「一致率」と「κ係数」を記述する。2名が適正に独立して評価したことの証にもなる（方法「12.個別研究（全体）のバイアス・リスク（#12）」と関連）。

(1) バイアス・リスクの評価

【記述例】
別紙様式（V）-11aの8項目について、各論文のバイアス・リスク評価を2名で独立して行い、一致率を算出した。単純な一致率は●●％、κ係数は●●で、中等度の一致だった。

各文献のバイアス・リスクの評価点は、採用文献番号1が●●（バイアス・リスク：中）、文献番号2が●●（高）、文献番号3が●●（低）・・・だった（別紙様式（V）-11）。

全体を通してバイアス・リスクは中程度から高い傾向にあった。ただし、後述するメタ...

(2) 非直接性的評価

【記述例】
非直接性は、全項目0であり、非直接性なしと評価した（別紙様式（V）-11）。

(3) 不精確の評価

【記述例】
対象となったRCT5編の合計サンプル数は●●であり、不精確はないと評価した（別紙様式（V）-11）。

(4) 非一貫性の評価

【記述例1 メタアナリシスを実施したSRの場合】
非一貫性は、メタアナリシスでの採用文献●編に対して、異質性の検定によりI²値を求めた結果、●●％（重要でない異質性）であった。

【記述例2 定性的なSRの場合】
●●編中、●●編で有意差があったため、「非一貫性：中（-1）」と評価した。
20. 個別の研究の結果（#20）
(1) 各介入群の単純な要約データの記述（#20a）
別紙様式（V）-11、（V）-13 を基に、本文中に主要アウトカム、副次アウトカムごとに記述する。

【記述例】

−−らの研究 1の●週間の介入における主要アウトカム■■の結果では、平均値差は、●±●mg/dL（p<0.05）であった。−−et al.の研究 2の結果では・・・（以下同様に記述）。

(2) （メタアナリシスを実施した場合）効果の推定量と信頼区間の記述（フォレスト・プロット）（#20b）
メタアナリシスの場合、フォレスト・プロット中（別紙様式（V）-15）に示した効果推定量と信頼区間を記述する。

【記述例】

−−らの研究 1の●週間の介入における主要アウトカム■■の結果では、重みづけ平均値差（WMD）[95%信頼区間（95%CI）]は、●[●-●]であった。

21. 結果の統合（#21）
メタアナリシスの結果をフォレスト・プロットとファンネル・プロット（別紙様式（V）-15）で示すとともに、統合した結果を記述する。

【記述例】

主要アウトカム■■について●研究を統合した結果、WMD[95%CI]は、●[●-●]有意な上昇があった。95%信頼区間も比較的小さく、一貫性（I²値）は●●％で「重要ではない異質性」であった。副次アウトカム■■も有意な上昇があった。
また、ファンネルプロットによる対称性を検討した結果、ほぼファンネルの形状を示した。

22. 全研究のバイアス・リスク（#22）
全研究のバイアス・リスク等の質に関する結果を全て記述する。

【記述例】
全体のバイアス・リスクは・・・だった。非直接性は・・・だった。不精確は・・・だった。非一貫性は・・・だった。
23. 追加的解析（#23）
感度分析やサブグループ解析、メタ回帰分析などを実施した場合には、その図とともに本文中に記述する。

【記述例】
介入期間の長短に関係する感度分析として、●●週間までの短期間の介入研究●編と、
●●週間までの長期間の介入研究●編を2分割し、それぞれメタアナリシスを行った結果・・・であった。

【記述例】
外挿性を検討するためにサブグループ解析として、日本人を対象とした研究●編と、それ以外の人を対象とした研究●編について別々にメタアナリシスを実施した。その結果、・・・。両者ともに有意な向上があった。

24. エビデンスの要約（#24）
主要アウトカムのエビデンスの強さを含めて主要な知見をまとめ、実際に消費者が当該食品又は機能性関与成分を摂取した場合にそれらの知見がどのように関係するかを丁寧に考察する。また、「機能性表示食品」制度の特有の検討事項も合わせて深く考察する。以下、その項目と記述例を示す。

(1) 有効性について（#24）

【記述例】
主要アウトカムである■■のメタアナリシスの結果、有意に■■の機能向上がみられたが、これは動物実験における作用機序の■■と一致していた。このことから有効性については・・・と考えられる。

(2) 機能性関与成分の定量的・定性的同等性について（#24）

【記述例】
機能性関与成分である■■は、■■から抽出され、■■の特徴を有している。定量的同等性については・・・であり、・・・だと考えられる。定性的同等性については・・・であり、・・・だと考えられる。したがって、・・・だと判断した。

(3) 研究の外挿性（研究対象とは異なる特性を持つ集団に対しても結果が当てはまるかどうか）について（#24）

【記述例】
対象論文●●編は日本人を対象としていたが、●●編はヨーロッパでの研究であり、日本人集団への結果の適用は・・・と考えられる。

(4) エビデンス総体（研究の妥当性・信頼性）について（#24）

【記述例】
全体のバイアス・リスク、非直接性、不精確、非一貫性・・・は、・・・と考えられ
(5) 有害事象について（#24）

【記述例】
医薬品との飲み合わせなどに伴う健康被害を防ぐために、機能性関与成分と医薬品との相互作用の有無についても、以下に論じた。もし高血圧症を有する者が、■■という降圧剤と本食品を摂取した場合には、相互作用により・・・といった有害事象が考えられる。

1日の目安は、●●mg（●●錠）であるが、過剰摂取として●●倍量の摂取があった場合

(6) 研究レビューの結果と表示しようとする機能性の関連性について（#24）

【記述例】
主要アウトカムが示しているのは、■■が■■を摂取することで■■といった効果が見られたということであり、表示しようとする機能性は■■が■■を摂取することで■■の機能向上が期待できるということである。・・・という観点から総合的に判断すると、得られた主要アウトカムから当該機能性を表示することは適切であると考えられる。

25. 限界（#25）
(1) 研究レベルとアウトカムレベルでの限界の記述（#25a）

【記述例】
本研究には、いくつかの限界と問題点がある。まず、対象となった1次研究において、・・・だと考えられる。また、全体のバイアス・リスクを考慮すると・・・と考えられ

(2) レビューレベルでの限界の記述（#25b）
同定した研究の収集が不完全であることや、出版バイアスなどについて記述する。

【記述例】
データベースは■■、■■を用いて、英文と和文の両方で●●、●●をキーワードとし
て、レビュー対象論文の収集を行った。しかし・・・といった点で、収集の網羅性に問題
が残っている。出版バイアスについては、ファンネルプロットを用いて評価を行い、大き
な出版バイアスが存在する可能性は低いと判断したが、・・・といった問題があった。

26. 結論（#26）
P(I)E(C)Oや得られたアウトカム、考察を踏まえて、簡潔に結論を述べる。その書きぶりは、批判的吟味に基づき、適正なものでなければならない（言い過ぎない）。併せて、今後の研究への意味合いを簡潔に記述する。

【記述例（今後の研究への意味合いの部分）】
機能性関与成分である■■は、疾病に罹患していない女性の■■の部位において、■■
の作用があると考えられた。ただし、男性と他の部位においての■■は依然として不明な
ままであるので、今後の研究による解明が求められる。
27. 資金源（#27）
SR の資金源とその他の支援（#27a）・SR における資金提供者の役割（#27b）

資金源はほとんどの場合、自社であることが想定されるが、それを明記する必要がある。また、SR を自社で行ったのか、外部の委託業者に委託したのか（部分又は全部委託したのか）も記述する。

その他の支援者として、利益相反行為防止の観点から、研究者による協力など、金銭的な関係があった際には、名前・所属・役割を記述することが望ましい。また、外部の委託業者を経由して協力を得た研究者についても同様に、実名・所属・役割の記述が望まれる。

SR の実施者については、これまでどおり「イニシャル・部署・役割」のみの記述でも構わないとともが、SR 自体の信頼性（役割・責任所在の明確化）をより高めるために、実名を出すこともひとつつの方法であると考えられる（ちなみに、本来の学術論文としての SR は当然ながら実名である）。また、委託先の社内体制についても同様に記述して、複数人による評価体制が敷かれていることを明確にする。

【記述例 1　自社で実施し、監修・検索・メタアナリシスなどで研究者などの協力を得た場合】
資金源は自社であった。SR の監修として、◆◆大学教授◆◆氏の支援を受け、謝金を支払った。データベース検索として、◆◆大学◆◆司書に依頼し、謝金を支払った。メタアナリシスの実施は◆◆統計研究所◆◆氏に依頼し、謝金を支払った。

【記述例 2　外部委託先を通して研究者などの協力を得た場合】
資金源は自社であった。SR は、◆◆株式会社に全て委託した。なお、総合評価・監修として、◆◆株式会社が設置した◆◆委員会のメンバーである◆◆研究所長◆◆氏、◆◆大学教授◆◆氏、◆◆大学准教授◆◆氏の３名に、委託先の◆◆株式会社から謝金が支払われた。

【記述例 実施者の記述（委託した社内の実施者も同様に記述する）】
本 SR において、本社員の役割は次のとおりであった。

研究者の役割

AA ・・・部・・・課 (A)： スクリーニング、質評価、構造化抄録の作成
BB ・・・部・・・課 (B)： スクリーニング、質評価、構造化抄録の作成
CC ・・・部・・・課 (C)： スクリーニング、質評価、構造化抄録の作成
DD ・・・部・・・課 (D)： 総括、質評価、スクリーニング、本文執筆
EE ・・・部・・・課 (E)： 質評価、スクリーニング、メタアナリシス、監修
FF ・・・部・・・課 (F)： 検索