農薬評価書

ブタクロール (第2版)

令和5年(2023年)11月 食品安全委員会

目 次

		貝
0	審議の経緯	. 4
0	食品安全委員会委員名簿	. 5
0	食品安全委員会農薬専門調査会専門委員名簿	. 5
0	食品安全委員会農薬第一専門調査会専門委員名簿	. 7
0	要 約	. 8
Ι.	評価対象農薬の概要	. 9
	1. 用途	. 9
;	2. 有効成分の一般名	. 9
	3.化学名	
	4. 分子式	
	5. 分子量	
(6. 構造式	
•	7. 物理的化学的性状	. 9
	8. 開発の経緯	10
	安全性に係る試験の概要	
	1. 土壌中動態試験	11
	(1)好気的湛水土壌中動態試験	
	(2)好気的土壌中動態試験	
	(3)嫌気的土壌中動態試験	11
	(4)土壌表面光分解試験	12
	(5)土壌吸着試験	12
:	2. 水中動態試験	12
	(1)加水分解試験①	12
	(2)加水分解試験②	13
	(3)水中光分解試験①	13
	(4)水中光分解試験②	13
;	3. 土壌残留試験	14
	4.植物、家畜等における代謝及び残留試験	14
	(1)植物代謝試験	14
	(2)作物残留試験	16
	(3) 魚介類における最大推定残留値	16
!	5. 動物体内動態試験	16
	(1)ラット(経口投与)	16
	(2)ラット(静脈内投与)	23
	(3)サル(静脈内投与)	25
	(4)ラット及びマウスにおける分布及び排泄の比較	26
	(5) 血液結合性に関する種間比較 (<i>in vitro</i>)	27

	6. 急性毒性試験等	27
	(1) 急性毒性試験(経口投与)	27
	(2)一般薬理試験	28
	7. 亜急性毒性試験	30
	(1) 90 日間亜急性毒性試験(ラット)①	30
	(2) 90 日間亜急性毒性試験(ラット)②<参考資料>	31
	(3)90日間亜急性毒性試験(マウス)	32
	8. 慢性毒性試験及び発がん性試験	33
	(1)1年間慢性毒性試験(イヌ)	33
	(2)2年間慢性毒性/発がん性併合試験(ラット)①	34
	(3)2年間慢性毒性/発がん性併合試験(ラット)②	35
	(4)2年間慢性毒性/発がん性併合試験(ラット)③	38
	(5)2年間発がん性試験(マウス)	38
	9. 生殖発生毒性試験	39
	(1)2世代繁殖試験(ラット)	39
	(2)発生毒性試験(ラット)	40
	(3)発生毒性試験(ウサギ)	
	10. 遺伝毒性試験	
	(1)分析用標準品	
	(2)原体	
	1 1. 経皮投与、吸入ばく露等試験	
	(1)急性毒性試験(経皮、腹腔内及び皮下投与並びに吸入ばく露)	
	(2)眼・皮膚に対する刺激性及び皮膚感作性試験	
	(3) 21 日間亜急性経皮毒性試験 (ウサギ)	
	12. その他の試験	
	(1)二段階発がん試験(ラット)	
	(2)腫瘍発生機構に関する試験(ラット)	
	(3)腺胃腫瘍性病変の解析①	
	(4)腺胃腫瘍性病変の解析②	
	(5)雌ラットにおける胃壁細胞の定量	
	(6)ラットの胃及び鼻部組織における細胞増殖活性に対する影響	
	(7)ラット胃粘膜の細胞増殖活性に対する影響	
	(8) マウス胃粘膜の細胞増殖活性に対する影響	
	(9)アカゲザル胃粘膜の細胞増殖活性に対する影響	
	(10)ラット腺胃及び肝におけるグルタチオンに対する影響	
	(11) 腫瘍の総合考察	
	(12)公表文献における研究結果	55
_		
\coprod .	安全性に係る試験の概要(代謝物)	
	1. 遺伝毒性試験(代謝物[19]及び[20])	56

| IV. | . 食品 | 健康影響 | 『評価 | |
 |
57 |
|-----|------|------|-------|-------------|------|------|------|------|------|------|------|------|------|------|--------|
| ٠ ; | 別紙 1 | :代謝物 | 1/分解物 | 略称 |
 |
63 |
| ٠ ; | 別紙 2 | :検査値 | 等略称。 | |
 |
66 |
| ٠ ; | 別紙 3 | :作物殍 | 留試験 | ਹ績. |
 |
68 |
| - 3 | 参照 | | | |
 |
70 |

<審議の経緯>

```
一第1版関係一
```

- 1973 年 5月 15日 初回農薬登録
- 2007年 10月 1日農林水産省から厚生労働省へ基準設定依頼(魚介類)
- 2007年 10月 12日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安第 1012003 号)、関係書類の接受(参照 1~82)
- 2007年 10月 18日 第 211 回食品安全委員会 (要請事項説明)
- 2007年 11月 7日 第17回農薬専門調査会総合評価第一部会
- 2007年 12月 5日 第18回農薬専門調査会総合評価第一部会
- 2009年 1月 20日 追加資料受理(参照83、84)
- 2009年 1月 23日 第27回農薬専門調査会総合評価第二部会
- 2010年 3月 11日 追加資料受理(参照 85~88)
- 2010年 8月 4日第1回農薬専門調査会評価第二部会
- 2010年 10月 20日 第67回農薬専門調査会幹事会
- 2011 年 3月 31日 第 376 回食品安全委員会(報告)
- 2011年 4月 5日 から5月4日まで 国民からの意見・情報の募集
- 2011年 8月23日農薬専門調査会座長から食品安全委員会委員長へ報告
- 2011 年 8月 25 日 第 396 回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知) (参照90)

2012 年 12 月 28 日 残留農薬基準告示(参照 91)

一第2版関係一

- 2019年 9月 9日 再評価農薬に係る農林水産省告示 (参照 92)
- 2022 年9月 28日 農林水産大臣から農薬の再評価に係る食品健康影響評価について要請(4消安第3356号)、関係書類の接受(参照93~99等)
- 2022 年 10 月 4 日 第 874 回食品安全委員会(要請事項説明)
- 2023 年 3月 17日 第14回農薬第一専門調査会
- 2023年 4月 27日 第15回農薬第一専門調査会
- 2023年 8月 1日 追加資料受理(参照 101)
- 2023年 8月 29日 第910回食品安全委員会(報告)
- 2023年 8月 30日 から 9月 28日まで 国民からの意見・情報の募集
- 2023年 10月 23日 農薬第一専門調査会座長から食品安全委員会委員長へ報告
- 2023 年 10 月 31 日 第 918 回食品安全委員会(報告)

(11月1日付け農林水産大臣へ通知)

<食品安全委員会委員名簿>

(2009年6月30日まで) (2011年1月6日まで) (2012年6月30日まで)

見上 彪(委員長) 小泉直子(委員長) 小泉直子(委員長)

小泉直子(委員長代理) 見上 彪(委員長代理*) 熊谷 進(委員長代理*)

 長尾 拓
 長尾 拓

 野村一正
 野村一正

 畑江敬子
 畑江敬子

 廣瀬雅雄
 廣瀬雅雄

 本間清一
 村田容常

*: 2009年7月9日から *: 2011年1月13日から

(2021年7月1日から)

山本茂貴(委員長)

浅野 哲(委員長代理 第一順位)

川西 徹(委員長代理 第二順位)

脇 昌子(委員長代理 第三順位)

香西みどり

松永和紀

吉田充

< 食品安全委員会農薬専門調査会専門委員名簿>

(2008年3月31日まで)

鈴木勝士(座長) 三枝順三 西川秋佳**

林 真 (座長代理*) 佐々木有 布柴達男

赤池昭紀 代田眞理子**** 根岸友惠

石井康雄 高木篤也 平塚 明

上路雅子 田村廣人 細川正清

臼井健二 津田修治 松本清司

江馬 眞 津田洋幸 柳井徳磨

大澤貫寿 山崎浩史

太田敏博 長尾哲二 山手丈至

大谷 浩 中澤憲一 與語靖洋

小澤正吾 納屋聖人 吉田 緑

*: 2007年4月11日から

**: 2007年4月25日から

***: 2007年6月30日まで

****: 2007年7月1日から

(2010年3月31日まで)

鈴木勝士 (座長) 平塚 明 佐々木有 林 真(座長代理) 代田眞理子 藤本成明 相磯成敏 高木篤也 細川正清 赤池昭紀 玉井郁巳 堀本政夫 石井康雄 田村廣人 松本清司 泉 啓介 津田修治 本間正充 今井田克己 津田洋幸 柳井徳磨 上路雅子 長尾哲二 山崎浩史 中澤憲一* 臼井健二 山手丈至 太田敏博 永田 清 與語靖洋 義澤克彦** 大谷 浩 納屋聖人 吉田 緑 小澤正吾 西川秋佳 川合是彰 若栗 忍 布柴達男 小林裕子 根岸友惠 三枝順三*** 根本信雄

*: 2009年1月19日まで

**: 2009年4月10日から

***: 2009年4月28日から

(2012年3月31日まで)

納屋聖人 (座長) 平塚 明 佐々木有 林 真(座長代理) 代田眞理子 福井義浩 相磯成敏 高木篤也 藤本成明 赤池昭紀 玉井郁巳 細川正清 浅野 哲** 田村廣人 堀本政夫 石井康雄 津田修治 本間正充 泉 啓介 津田洋幸 增村健一** 上路雅子 長尾哲二 松本清司 臼井健二 柳井徳磨 永田 清 太田敏博 長野嘉介* 山崎浩史 小澤正吾 西川秋佳 山手丈至 川合是彰 布柴達男 與語靖洋 川口博明 根岸友惠 義澤克彦 小林裕子 根本信雄 吉田 緑 三枝順三 八田稔久 若栗 忍

*: 2011年3月1日まで

**: 2011年3月1日から

<食品安全委員会農薬第一専門調査会専門委員名簿>

(2022年4月1日から)

小野 敦 (座長)
 美谷島克宏 (座長代理 第一順位)
 義澤克彦 (座長代理 第二順位)
 井上真奈美
 小澤正吾
 桒形麻樹子
 清家伸康
 祖父江友孝
 平林容子
 堀本政夫
 本間正充
 與語靖洋

杉山圭一* *: 2023年9月30日まで

<第 14 回農薬第一専門調査会専門参考人名簿>

中島美紀(金沢大学新学術創成研究機構ナノ生命科学研究所教授)

<第 15 回農薬第一専門調査会専門参考人名簿>

赤池昭紀(和歌山県立医科大学薬学部教授 兼 京都大学名誉教授) 中島美紀(金沢大学新学術創成研究機構ナノ生命科学研究所教授)

要約

酸アミド系除草剤である「ブタクロール」 (CAS No. 23184-66-9) について、各種資料を用いて食品健康影響評価を実施した。第2版の改訂に当たっては、農薬取締法に基づく再評価に係る評価要請がなされており、農林水産省から、作物残留試験(水稲)、急性毒性試験(経口投与、ラット)及び復帰突然変異試験の成績、公表文献報告書等が新たに提出された。

評価に用いた試験成績は、植物代謝(水稲)、作物残留、動物体内動態(ラット、マウス及びサル)、亜急性毒性(ラット及びマウス)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラット)、発がん性(マウス)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性等である。

各種毒性試験結果から、ブタクロール投与による影響は主に肝臓(肝細胞肥大等)、 腎臓(重量変化、慢性腎症等)、腺胃(粘膜萎縮)、鼻腔(粘膜杯細胞過形成)、甲 状腺(過形成)及び血液(貧血)に認められた。繁殖能に対する影響、催奇形性及び 生体にとって問題となる遺伝毒性は認められなかった。

発がん性試験において、ラットで胃、甲状腺及び鼻部における腫瘍の発生頻度が増加したが、腫瘍の発生メカニズムは遺伝毒性によるものではなく、評価に当たり閾値を設定することは可能であると考えられた。また、いずれの腫瘍においても、その発生メカニズムからヒトへの外挿性又はヒトでの感受性は低いと考えられた。

各種試験結果から、農産物及び魚介類中のばく露評価対象物質をブタクロール(親 化合物のみ)と設定した。

各試験で得られた無毒性量のうち最小値は、ラットを用いた 2 年間慢性毒性/発がん性併合試験②及び③の総合評価における無毒性量 1.0 mg/kg 体重/日であったことから、これを根拠として安全係数 100 で除した 0.01 mg/kg 体重/日を許容一日摂取量(ADI)と設定した。

また、ブタクロールの単回経口投与等により生ずる可能性のある毒性影響に対する無毒性量及び最小毒性量のうち最小値は、ウサギを用いた発生毒性試験の無毒性量49 mg/kg 体重/日であったことから、これを根拠として、安全係数100で除した0.49 mg/kg 体重を急性参照用量(ARfD)と設定した。

I. 評価対象農薬の概要

1 用途

除草剤

2. 有効成分の一般名

和名:ブタクロール

英名: butachlor (ISO 名)

3. 化学名

IUPAC

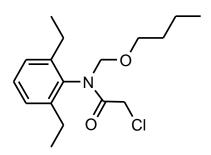
和名: N-ブトキシメチル-2-クロロ-2',6'-ジエチルアセトアニリド

英名: N-butoxymethyl-2-chloro-2',6'-diethylacetanilide

CAS (No. 23184-66-9)

和名:N-(ブトキシメチル)-2-クロロ-N-(2,6-ジエチルフェニル)アセトアミド

英名: N-(butoxymethyl)-2-chloro-N-(2,6-diethylphenyl)acetamide


4. 分子式

C₁₇H₂₆ClNO₂

5. 分子量

311.9

6. 構造式

7. 物理的化学的性状

融点 : -25℃未満

沸点 : 226℃(2,130 Pa)で分解のため測定不能

密度 : $1.07 \text{ g/cm}^3 (20^{\circ})$ 蒸気圧 : $2.5 \times 10^{-4} \text{ Pa} (25^{\circ})$ 外観(色調及び形状)、臭気 : 無色液体、無臭

水溶解度 : 0.016 g/L (20℃)

オクタノール/水分配係数 : $\log P_{ow} = 4.42 (25 ^{\circ})$

解離定数:測定不能(水に難溶のため)

8. 開発の経緯

ブタクロールは、1968 年に米国モンサント・カンパニーによって開発された酸アミド系除草剤であり、超長鎖脂肪酸の合成阻害作用により、成長部位での正常な細胞分裂を阻害することによって植物を枯死させると考えられている。

日本においては、1973年に初回の農薬登録が取得され、現在は日産化学株式会社に承継されている。海外では韓国、アルゼンチン等において登録が取得されている。

Ⅱ. 安全性に係る試験の概要

各種動態及び代謝試験 [II.1、2、4及び5] は、ブタクロールのフェニル基の炭素を均一に 14 C で標識したもの(以下「 $[phe^{-14}C]$ ブタクロール」という。)、カルボニル基の炭素を 14 C で標識したもの(以下「 $[car^{-14}C]$ ブタクロール」という。)及びアセトアミド基の 2 位の炭素を 13 C で標識したもの(以下「 13 C-ブタクロール」という)を用いて実施された。放射能濃度及び代謝物濃度は特に断りがない場合は比放射能(質量放射能)からブタクロールの濃度(mg/kg 又は $\mu g/g$)に換算した値として示した。

代謝物/分解物略称及び検査値等略称は別紙1及び2に示されている。

1. 土壤中動態試験

(1) 好気的湛水土壤中動態試験

[phe-14C]ブタクロールを用いて、好気的湛水土壌中動態試験が実施された。 試験の概要及び結果については表 1 に示されている。

土壌中の推定分解経路は、主に分解物[9]の生成のほか、分解物[26]及び[28]の 生成であると考えられた。(参照 11、94)

衣 · 为从山顶的工农 · 动心的人 · 加 · 及 / 0 · 加 · 人								
試験条件	土壌	認められた分解物	推定半減期					
水深 1.5 cm、1.0 mg/kg 乾土、5 ±2℃、暗所、181 日間インキュ ベート		[9]、[26]、[28]	58.6 日					

表 1 好気的湛水土壌中動態試験の概要及び結果

(2) 好気的土壌中動態試験

[car-14C]ブタクロール及び ¹³C-ブタクロールの混合物を用いて、好気的土壌中動態試験が実施された。

試験の概要及び結果については表2に示されている。 (参照12、94)

女二 ガスの二級「対応間続なり物文人の情况						
試験条件	土壌	認められた分解物	推定半減期			
3 mg/kg 乾土、25℃、 暗所、10 週間インキュ	砂壤土(米国)		4~5 週間			
晴別、10 週間インギュ ベート	シルト質壌土(米国)	$[25], [30], [32], [34], {}^{14}CO_2$	約3週間			

表2 好気的土壌中動態試験の概要及び結果

(3)嫌気的土壌中動態試験

[car-14C]ブタクロール及び ¹³C-ブタクロールの混合物を用いて、嫌気的土壌中動熊試験が実施された。

試験の概要及び結果については表3に示されている。(参照12、94)

[・]分解物は最低20種が確認されたが、その大部分は量が少なく、同定できなかった。

表3 嫌気的土壌中動態試験の概要及び結果

試験条件	土壌	認められた分解物	推定半減期
3 mg/kg 乾土、25℃、暗所、 6 週間インキュベート	シルト質壌土(米国)	[30]、 ¹⁴ CO ₂	約 15 日

(4)土壤表面光分解試験

 $[car^{-14}C]$ ブタクロール、 $[phe^{-14}C]$ ブタクロール又は ^{13}C -ブタクロールを用いて、 土壌表面光分解試験が実施された。

試験の概要及び結果については表 4 に示されている。 (参照 14、94)

表 4 土壌表面光分解試験の概要及び結果

試験条件	土壌	認められた分解物	推定半減期
太陽灯(光強度: 270 W)、3 日間 照射	シルト質埴壌土 (米国)	[14], [63]	_

-:算出されていない。

(5) 土壤吸着試験

[car-14C]ブタクロール又は非標識ブタクロールを用いて、土壌吸着試験が実施された。

試験の概要及び結果については表5に示されている。(参照 $13\sim15$ 、94)

表 5 土壌吸着試験の概要及び結果

供試土壌	Freundlich の吸着係数 K ^{ads}	有機炭素含有率により 補正した吸着係数 K _{oc}
シルト質壌土、シルト質埴壌 土及び砂壌土(2種類)(いずれ も米国)	$3.2 \sim 20.0$	$450{\sim}588$
シルト質壌土、シルト質埴壌 土、砂壌土(2種類)及び底質土 (いずれも米国) ^a	$2.02{\sim}10.7$	$273{\sim}569$
軽埴土(北海道及び新潟)、埴壌 土(岡山)及び砂壌土(鹿児島)	30.2~62.1	1,330~4,430

a: 脱着率は底質土及び埴壌土で低く、砂壌土及びシルト質壌土で高かった。

2. 水中動態試験

(1)加水分解試験①

 $[car^{-14}C]$ ブタクロールを用いて、加水分解試験①が実施された。 試験の概要及び結果については表 6 に示されている。(参照 16、94)

表 6 加水分解試験①の概要及び結果

試験条件	緩衝液	認められた分解物	推定半減期
5 mg/L、25℃、暗所、	pH 3 (フタル酸緩衝液)		
28 日間インキュベー	pH 6 (リン酸緩衝液)	検出されず	算出されず
F	pH 9 (ホウ酸緩衝液)		

[・]ブタクロールは加水分解に対して安定であった。

(2)加水分解試験②

 $[car^{-14}C]$ ブタクロールを用いて、加水分解試験②が実施された。 試験の概要及び結果については表 7 に示されている。(参照 17、94)

表 7 加水分解試験②の概要及び結果

試験条件	緩衝液	認められた分解物	推定半減期
► /I 49 44°C 90 II	pH 3 (フタル酸緩衝液)	[14]、[28]	
5 mg/L、43~44℃、28 日間インキュベート	pH 6 (リン酸緩衝液)	検出されなかった。	_
	pH 9 (ホウ酸緩衝液)	[28]	

^{-:} 算出されていない。

(3)水中光分解試験①

[phe-14C]ブタクロールを用いて、水中光分解試験①が実施された。 試験の概要及び結果については表8に示されている。(参照18、94)

表8 水中光分解試験①の概要及び結果

試験条件	供試水	認められた分解物	推定半減期 a
1 mg/L、25±2°C、キセ	滅菌蒸留水(pH 6.5)	[28]	17.2 日 (74.1 日)
ノン光(425 W/m²)、7 日 間連続照射	滅菌自然水(河川水、茨 城、pH 9.0)	[28]	15.4 日 (66.4 日)

a:括弧内は東京における春季太陽光換算値

(4)水中光分解試験②

[car-14C]ブタクロール及び非標識ブタクロールを用いて、水中光分解試験②が 実施された。

試験の概要及び結果については表9に示されている。(参照12、94)

表 9 水中光分解試験②の概要及び結果

試験条件	供試水	認められた分解物	推定半減期
1 及び 5 mg/L、人工光(光強度 不明)、最長 48 時間連続照射	滅菌蒸留水	[14]、[26]、[28]	20 時間 a

a: 2%アセトン存在下

3. 土壤残留試験

ブタクロール及び分解物[21]を分析対象化合物とした土壌残留試験が実施された。 試験の概要及び結果は表 10 に示されている。 (参照 19~22、94)

11		我10 1 工場及曲路線の概要及び船未(ファブロール)						
試験	濃度*	土壌	推定半減期					
D-VII)C	1成/文	上水	ブタクロール					
		沖積土・埴壌土(埼玉)	26 日					
容器内	9 m m/l-m	洪積土・埴壌土(大阪)	36 日					
試験	2 mg/kg	沖積土・壌土(滋賀)	8~9 目					
		火山灰土(栃木)	8~9 目					
	$2{,}000~^{ m G}$ g ai/ha	沖積土・埴壌土(埼玉)	5 日					
		沖積土・壌土(滋賀)	15~20 日					
	1,600 ^{EC} g ai/ha +	沖積土・壌土(滋賀)	6 日					
ほ場試験	2,000 ^G g ai/ha	火山灰土(茨城)	7 日					
	1,500 ^G g ai/ha	軽埴土(茨城)	5 日					
	1,500 ° g al/na	沖積土・軽埴土(福岡)	9 日					
	1 000 J:/	軽埴土(茨城)	3 日					
	1,000 ^J g ai/ha	沖積土・軽埴土(福岡)	12 日					

表 10-1 + 集残留試験の概要及び結果(ブタクロール)

		WORLD WOOD A HOLL CO.		11 122 C — · 3 /	
試験	濃度*	土壌	推定半減期		
武物央	仮 及"	上場	ブタクロール	分解物[21]	
容器内	1 5 m m/lr m	沖積土・埴壌土 (滋賀)	8~10 日	18 日	
谷布内 試験	1.5 mg/kg	火山灰土・壌土 (茨城)	7 日	16 日	
时间失	2 mg/kg	沖積土・壌土 (滋賀)	10 日	18 日	
	1 700 G :/l	沖積土・埴壌土(滋賀)	25~30 日	5~10 日	
ほ場試験	1,500 ^G g ai/ha	火山灰土・壌土 (茨城)	2~3 日	2~4 日	
は場合で	2,000 ^G g ai/ha	沖積土・埴壌土 (滋賀)	2~4 日	30~35 日	
		火山灰土・壌土 (茨城)	3~5 日	2~4 日	

表 10-2 土壌残留試験の概要及び結果(ブタクロール及び分解物[21])

4. 植物、家畜等における代謝及び残留試験

(1)植物代謝試験

① 水稲-1

温室内の容器で生育させた播種 3 週間後の水稲 (品種: Bluebelle) に[phe-14C] ブタクロール及び 13 C-ブタクロールの混合物を 1,120~g~ai/ha の施用量で土壌処 理し、湛水条件下で栽培して、植物代謝試験が実施された。

収穫期(処理4か月後)の水稲試料中放射能濃度は表11に示されている。

茎葉部に比べ玄米の放射能濃度は低く、可食部である玄米への移行性は低いと 考えられた。

^{*:}容器内試験では標準品、ほ場試験ではG:粒剤を使用

表 11 収穫期の水稲試料中放射能濃度

残留放射能濃度(mg/kg)				
茎葉部	玄米			
9.87(5.59)	0.82(0.07)			

注)括弧内は%TAR

抽出画分の茎葉部及び種実部(玄米)に未変化のブタクロールは認められなかった。茎葉部及び玄米からは 40 種以上の代謝物が検出されたが、大部分は微量で同定には至らなかった。茎葉部では最も多かったのが代謝物[25]であり、茎葉中で 12.1%TRR(1.2 mg/kg)存在した。また、代謝物[34]が 7.2%TRR、代謝物[20]が 6.1%TRR、代謝物[19]が 4.1%TRR 存在した。

玄米中では代謝物[20]が最も多く、13.6%TRR(0.11 mg/kg)を占めた。また、 代謝物[19]が 5.4%TRR、代謝物[35]が 2.2%TRR 存在した。 (参照 9、94)

② 水稲-2

温室内の容器で生育させた 3 葉期の水稲 [品種: M-202(ジャポニカ種)] に [phe- 14 C]ブタクロール及び 13 C-ブタクロールの混合物を 1,500 g ai/ha の施用量で田面処理し、湛水条件で栽培して、植物代謝試験が実施された。

収穫期(処理 148~156 日後)の水稲試料中放射能濃度は表 12 に示されている。

放射能濃度は根部で 2.29 mg/kg と最も高く、玄米では 0.125 mg/kg と最も低かったことから、放射能の玄米への移行性は低いと考えられた。

表 12 収穫期の水稲試料中放射能濃度

残留放射能濃度(mg/kg)						
根部 稲わら もみ殻 玄米						
2.29	1.00	1.94	0.125			

玄米中に未変化のブタクロールは認められなかった。多数($40\sim50$ 種類)の低濃度の代謝物が確認されたが、いずれも 0.005 mg/kg を超えるものはなかった。6 種類の代謝物(代謝物[11]、[13]、[18]、[19]、[20]及び[27])が同定されたが、いずれも $0.001\sim0.005$ mg/kg(0.8%TRR $\sim4.0\%$ TRR)であった。それ以外の代謝物は同定が不可能であった。また、玄米中非抽出性放射能の 88%はリグニン、 \sim ミセルロース等の植物体成分に結合していることが確認された。

水稲における主な代謝経路は、ブトキシメチル基の脱離と 2 位の塩素の置換による水酸化、配糖体化及び 2 位の塩素のグルタチオン抱合による硫黄含有代謝物の生成であることが示唆された。(参照 9、10、94)

(2) 作物残留試験

水稲を用いて、ブタクロールを分析対象化合物とした作物残留試験が実施された。

結果は別紙3に示されている。

ブタクロールの最大残留値は、最終散布 76 日後の稲わらで認められた 0.10 mg/kg であり、可食部 (玄米) における残留値はいずれも定量限界未満であった。

また、参考値として、水稲を用いてブタクロール及び2,6-ジエチルアニリン系 代謝物¹を分析対象化合物とした作物残留試験の結果が、別紙3に示されている。

ブタクロール及び 2,6-ジエチルアニリン系代謝物の合量の最大残留値は、散布 118 日後における稲わらの 0.10 mg/kg であり、可食部(玄米)における残留値 はいずれも定量限界未満であった。(参照 23、24、94、95)

(3) 魚介類における最大推定残留値

ブタクロールの水域 PEC 及び BCF を基に、魚介類の最大推定残留値が算出された。

ブタクロールの水域 PEC は $0.15 \mu g/L$ 、BCF は 162(試験魚種:ブルーギル)、 魚介類における最大推定残留値は $0.122 \mu g/kg$ であった。(参照 81、94)

5. 動物体内動態試験

- (1)ラット(経口投与)
- ① 吸収

a. 血中濃度推移

SD ラット (一群雌雄各 3~4 匹) に[phe-14C]ブタクロール及び 13 C-ブタクロールの混合物を 10 mg/kg 体重 (以下 [5.(1)] において「低用量」という。) 又は 1,000 mg/kg 体重 (以下 [5.(1)] において「高用量」という。) で単回経口投与し、血中濃度推移が検討された。

血漿中薬物動態学的パラメータは表 13 に示されている。

 T_{max} は低用量群では $8\sim11$ 時間、高用量群では $32\sim33$ 時間であった。減衰は 二相性を示し、 α 相の $T_{1/2}$ は低用量群で $5.5\sim5.8$ 時間、高用量群で $9.1\sim12.2$ 時間、8 相の $T_{1/2}$ は低用量群で $64.3\sim101$ 時間、高用量群で $79.4\sim115$ 時間であった。(参照 2、94)

¹ 加水分解により代謝物[21]に変換される代謝物をいう(以下同じ。)。本試験の分析は、ブタクロール及び 2,6-ジエチルアニリン系代謝物を、加水分解により代謝物[21]に変換して行われており、残留値はブタクロール及び 2,6-ジエチルアニリン系代謝物の合量(ブタクロール換算)として示されている。

表 13 血浆中染物動態子的バブメータ								
投与量		10 mg/	kg 体重	1,000 mg/kg 体重				
性別		雄	雌	雄	雌			
T _{max} (hr)		8	11	32	33			
$C_{max}(\mu g/g)$		0.81	0.87^{a}	55.3	$42.4^{\rm b}$			
σ (1) α 相		5.8	5.5	9.1	12.2			
$T_{1/2}(hr)$	8相	64.3	101	79.4	115			
AIIC(hr · ug/g)		21.7	26.8	3 590	3 580			

表 13 血漿中薬物動態学的パラメータ

a: 投与 12 時間後の血漿中濃度 b: 投与 32 時間後の血漿中濃度

b. 吸収率

尿及び糞中排泄試験(単回経口投与)-1 [5.(1)④a.] における尿、組織、カーカス 2 及びケージ洗浄液中排泄率の合計又は胆汁中排泄試験 [5.(1)④d.] における胆汁中排泄率のうち大きい値を基にすると、吸収率は低用量群で 43.8% $\sim 48.1\%$ 、高用量群で $34.0\% \sim 41.3\%$ と算出された。また、尿及び糞中排泄試験 [5.(1)④a.] における尿、組織、カーカス及びケージ洗浄液中放射能と胆汁排泄試験 [5.(1)④d.] における胆汁中排泄率の合計を基にすると、吸収率は低用量群で $84.1\% \sim 90.7\%$ 、高用量群で $53.7\% \sim 55.9\%$ と算出された。

尿及び糞中排泄試験(単回経口投与)-2 [5.(1)④b.] における尿、組織、カーカス及びケージ洗浄液中排泄率の合計から算出された吸収率は、低用量群で $29.2\%\sim37.1\%$ 、高用量群で $27.2\%\sim34.4\%$ であった。

尿及び糞中排泄試験(反復経口投与) [5.(1)④c.] における尿、組織、カーカス及びケージ洗浄液中排泄率の合計から算出された吸収率は、37.5%~45.9%であった。(参照 2、3、94)

② 分布

SD ラット(一群雌雄各 3~5 匹)に $[phe^{-14}C]$ ブタクロール及び ^{13}C -ブタクロールの混合物を低用量又は高用量で単回経口投与して、体内分布試験が実施された。

主要組織における残留放射能濃度は表 14 に示されている。

血漿中 T_{max} 付近(低用量群で投与 9 時間後、高用量群で投与 32 時間後)から試験終了時(低用量群で投与 72 時間後、高用量群で投与 96 時間後)まで、いずれの時期も血液中の放射能濃度は高い値であった。血漿に比べ赤血球の放射能濃度が高く、血液中の放射能は主として赤血球と結合して存在していると考えられた。他の組織では肝臓、腎臓、脂肪、筋肉及び皮膚に比較的高い放射能濃度が認められたが、試験終了時に 1%TAR を超える放射能が残留していたのは血液のみであった。

²組織・臓器を取り除いた残渣のことをカーカスという(以下同じ。)。

また、尿及び糞中排泄試験(単回経口投与)-2 [5.(1)④b.] における各群の、投与 240 時間後の各組織中放射能を測定したところ、いずれの群も全血中の放射能濃度が最も高く(2.4%TAR \sim 3.1%TAR)、次いで脾臓、腎臓、肝臓、心臓、卵巣で放射能濃度が高かった。血液を除く組織中の放射能はいずれも0.4%TAR 未満であった。

全身オートラジオグラフィーを実施したところ、放射能は消化管、肝臓、肺、膀胱等、腎臓及び脾臓に高濃度に存在したほか、鼻甲介における局在も認められた。(参照 2、3、94)

表 14 主要組織における残留放射能濃度 (µg/g)

投与量 性別	F	1	女 4 工女祖戦における沈田以	
(12.7)、血液(7.30)、肝臓(7.10)、胃(1.37)、肺(1.13)、脾臓(1.07)、腎臓(6.75)、腎臓(3.17)、脾臓(1.68)、甲状(1.0)、肝臓(0.97)、副腎(0.64)、鼻甲介(0.55)、胃(0.53)、心臓(0.46)、骨髓(1.27)、膵臓(1.15)、鼻甲介(1.14)、血漿(1.0) mg/kg 体重 (大腸(30.1)、小腸(25.6)、赤血球(0.27)、大腿骨(0.18)、皮膚(0.13)、脳(0.12)、骨格筋(0.09)、血浆(0.09) 赤血球(1.23)、胃(11.9)、肝臓(1.61)、肝臓(1.34)、腎臓(1.01)、脾臓(2.66)、精(2.63)、甲状腺(1.84)、鼻甲介(1.82)、副腎(1.65)、膵臓(1.49)、心臓(1.38)、卵巣(1.16)、腹部の脂肪(1.10)、血浆(6.20)、子宫(0.19)、肠(0.14)、骨格筋(0.01)、皮膚(0.11)、腹部の脂肪(1.10)、血浆(1.08) (7.63)、腎臓(2.63)、甲状腺(1.84)、鼻甲介(1.53)、膵臓(1.11)、皮膚(0.24)、大腿骨(0.20)、子宫(0.19)、肠(0.24)、大腿骨(0.20)、子宫(0.19)、肠(0.14)、骨格筋(0.11)、皮膚(0.11)、腹部の脂肪(0.08)、血浆(6.92)、甲状腺(60.9)、肺(59.8)、肝臓(54.5)、甲状腺(74.6)、腎赤血球(1,010)、血液(602)、甲状腺(2.77)、臀臓(2.63)、膵臓(1.10)、肿臓(42.9)、副腎(40.8)、心臓(38.1)、鼻甲介(5.5)、皮膚(9.5)、大腿骨(9.4)、心臓(38.1)、骨格筋(7.5)、皮膚(9.5)、大腿骨(9.4)、下酸(1.20)、干酸(1.14)、肺(9.30)、血液(648)、脾臓(1.14)、肺(9.30)、血液(648)、脾臓(1.14)、肺(9.30)、血液(648)、脾臓(1.14)、肺(9.30)、血液(648)、脾臓(1.14)、肺(9.30)、甲状腺(1.15)、肉胃(1.25)、肺(1.19)、腹部の脂肪(1.10)、卵巣(9.6.4)、膵臓(1.10)、卵巣(9.6.4)、腱卵の脂肪(1.10)、半腱(1.10)、水肿(1.10)、甲状腺(1.10)、甲状腺(1.11)、肿肠(1.10)、甲状腺(1.11)、肿肠(1	投与量	性別	. , , . =	
## (6.75)、腎臓(3.17)、脾臓(1.68)、甲状腺(0.97)、副腎(0.64)、鼻甲介(0.55)、胃(0.53)、心臓(0.46)、骨髄(1.27)、膵臓(1.15)、鼻甲介(1.14)、血漿(1.0)、肝臓(0.39)、大腸(0.36)、小腸(0.35)、膵臓炎(0.27)、大腿骨(0.18)、皮膚(0.13)、脳(0.12)、骨格筋(0.09)、血浆(0.09) 血浆(0.09) 血液(1.20)、血液(1.20)、血液(1.20)、肝臓(1.30)、胃臓(1.40)、脾臓(2.76)、骨髓(2.68)、肺(2.63)、甲状腺(1.81)、甲腺(0.98)、副腎(0.93)、骨髓(0.67)、心臓(0.268)、肺(2.63)、甲状腺(1.81)、中腺腺(0.98)、副腎(0.93)、骨髓(0.67)、心臓(1.38)、卵巣(1.16)、腹部の脂肪(0.24)、大腿骨(0.20)、子宫(0.19)、肠(1.10)、血漿(1.08) (0.14)、骨格筋(0.11)、皮膚(0.11)、腹部の脂肪(0.14)、骨格筋(0.11)、皮膚(0.11)、腹部の脂肪(0.08)、血漿(0.07) 赤血球(1,010)、血液(602)、甲状腺(1.20)、肺(59.8)、肝臓(54.5)、甲状腺(277)、腎臓(201)、肝臓(179)、肺(42.9)、副腎(40.8)、心臓(38.1)、鼻甲介(1.50)、赤血球(1,320)、血液(602)、甲状腺(1.20)、胃(13.7)、小腸(12.5)、皮膚(9.5)、大腿骨(9.4)、肌(8.1)、骨格筋(7.5)、腹部の脂肪(7.5)、腹部の脂肪(7.5)、腹部の脂肪(7.5)、血漿(6.1) 赤血球(1,300)、血液(648)、肿臓(14.2)、胃(13.7)、小腸(12.5)、皮膚(9.5)、大腿骨(9.4)、肌(8.1)、骨格筋(1.59)、甲状腺(151)、副腎(125)、肺(199)、腹部の脂肪(110)、卵巣(96.4)、膵臓(97.6)、鼻甲介(37.5)、卵巣(30.9)、膵臓(159)、甲状腺(151)、副腎(125)、肺(199)、鼻甲介(37.5)、卵巣(30.9)、膵臓(159)、甲状腺(151)、刺腎(125)、肺(199)、鼻甲介(37.5)、卵巣(30.9)、膵臓(159)、甲状腺(151)、刺腎(125)、肺(199)、鼻甲介(37.5)、卵巣(30.9)、膵臓(14.4)、腹部の脂肪(14.0)、子宮(12.8)、中胚、(14.4)、腹部の脂肪(14.0)、子宮(12.8)、中胚、(14.4)、腹部の脂肪(14.0)、子宮(12.8)、(14.4)、腹部の脂肪(14.0)、子宮(14.4)、腹部の脂肪(14.0)、子宮(14.4)、腹部の脂肪(14.0)、子宮(14.4)、皮部のの脂肪(14.0)、子宮(14.4)、皮部のの脂肪(14.0)、子宮(14.4)、皮部のの脂肪(14.0)、子宮(14.4)、皮部のの脂肪(14.0)、子宮(14.			大腸(30.9)、小腸(14.0)、赤血球	赤血球(12.6)、血液(7.54)、甲状腺
##			(12.7)、血液(7.30)、肝臓(7.10)、胃	(1.37)、肺(1.13)、脾臓(1.07)、腎臓
(1.27)、膵臓(1.15)、鼻甲介(1.14)、血			(6.75)、腎臓(3.17)、脾臓(1.68)、甲状	(1.0)、肝臓(0.97)、副腎(0.64)、鼻甲介
# (1.0)		雄	腺(1.59)、骨髄(1.47)、肺(1.42)、副腎	(0.55)、胃(0.53)、心臓(0.46)、骨髄
10 mg/kg 大腸 (30.1)、小腸 (25.6)、赤血球 (20.5)、血液 (12.3)、胃 (11.9)、肝臓 (7.63)、腎臓(4.40)、脾臓(2.76)、骨髄 (2.68)、肺(2.63)、甲状腺(1.84)、鼻甲 介 (1.82)、副腎 (1.65)、膵臓(1.49)、心臓 (1.38)、卵巣 (1.16)、腹部の脂肪 (1.10)、血漿 (1.08) (1.10)、血漿 (1.08) (1.10)、血浆 (602)、甲状腺 (2.77)、腎臓 (201)、肝臓 (1.79)、肺体 (2.77)、腎臓 (201)、肝臓 (1.79)、肺体 (2.74.0)、血漿 (64.9) (274.0)、九腸 (1.320)、血液 (809)、腎臓 (1.37)、小腸 (1.320)、血液 (809)、腎臓 (1.30)、血液 (64.9) (1.59)、甲状腺 (1.51)、心臓 (4.09)、鼻甲介 (3.59)、甲状腺 (5.59)、甲状腺 (5.59)、甲状腺 (5.59)、甲状腺 (5.59)、甲状腺 (1.59)、甲状腺 (1.51)、心臓 (4.09)、鼻甲介 (3.59)、甲状腺 (5.59)、甲状腺 (5.59)、甲状腺 (1.59)、甲状腺 (1.59)、甲状腺 (1.51)、小腸 (1.59)、甲状腺 (1.59)、甲			(1.27)、膵臓(1.15)、鼻甲介(1.14)、血	(0.39)、大腸(0.36)、小腸(0.35)、膵臓
大腸(30.1)、小腸(25.6)、赤血球 赤血球(17.8)、血液(10.1)、脾臓(1.80)、肺(16.1)、肝臓(1.34)、腎臓(1.11)、甲状腺(0.98)、副腎(0.93)、骨髄(0.67)、心臓(0.57)、鼻甲介(0.53)、卵巣(0.48)、胃介(1.82)、副腎(1.65)、膵臓(1.49)、心臓(0.57)、鼻甲介(0.53)、卵巣(0.48)、胃介(1.82)、副腎(1.65)、膵臓(1.49)、心臓(0.35)、膵臓(0.34)、大腸(0.30)、小腸(1.10)、血漿(1.08)			漿(1.0)	(0.27)、大腿骨(0.18)、皮膚(0.13)、脳
体重	10			(0.12)、骨格筋(0.09)、血漿(0.09)
(7.63)、腎臓(4.40)、脾臓(2.76)、骨髄			大腸(30.1)、小腸(25.6)、赤血球	赤血球(17.8)、血液(10.1)、脾臓(1.80)、
雌 (2.68)、肺(2.63)、甲状腺(1.84)、鼻甲 (0.57)、鼻甲介(0.53)、卵巣(0.48)、胃 (1.82)、副腎(1.65)、膵臓(1.49)、心 (0.35)、膵臓(0.34)、大腸(0.30)、小腸 (1.10)、血漿(1.08) (0.24)、大腿骨(0.20)、子宮(0.19)、脳 (0.14)、骨格筋(0.11)、皮膚(0.11)、腹部 の脂肪(0.08)、血漿(0.07) (0.14)、骨格筋(0.11)、皮膚(0.11)、腹部 の脂肪(0.08)、血漿(0.07) (0.58)、骨髄(4.6)、副腎(80.4)、脾臓 (60.9)、肺(59.8)、肝臓(54.5)、甲状腺 (277)、腎臓(201)、肝臓(179)、肺 (42.9)、副腎(40.8)、心臓(38.1)、鼻甲介 (95.8)、骨髄(94.6)、副腎(80.4)、脾臓 (42.9)、副腎(40.8)、心臓(38.1)、鼻甲介 (95.6)、大腸(74.0)、血漿(64.9) (14.2)、胃 (13.7)、小腸 (12.5)、皮膚 (9.5)、大腿骨 (9.4)、脳 (8.1)、骨格筋 (7.5)、腹部の脂肪(7.5)、血漿(6.1) 赤血球 (1,320)、血液 (809)、腎臓 (240)、肝臓 (194)、骨髄 (181)、脾臓 (55.9)、甲状腺(54.1)、心臓(43.6)、骨髄 (159)、甲状腺(151)、副腎(125)、肺 (40.9)、鼻甲介(37.5)、卵巣(30.9)、膵臓 (119)、腹部の脂肪(110)、卵巣(96.4)、大腸 (18.9)、胃 (18.1)、小腸 膵臓 (77.6)、鼻甲介 (73.0)、心臓 (14.4)、腹部の脂肪(14.0)、子宮(12.8)、	体重			
## 介(1.82)、副腎(1.65)、膵臓(1.49)、心 (0.35)、膵臓(0.34)、大腸(0.30)、小腸 (1.38)、卵巣(1.16)、腹部の脂肪 (1.10)、血漿(1.08) (0.14)、骨格筋(0.11)、皮膚(0.11)、腹部の脂肪(0.08)、血漿(0.07) (0.14)、骨格筋(0.11)、皮膚(0.11)、腹部の脂肪(0.08)、血漿(0.07) 赤血球(1,010)、血液(602)、甲状腺(277)、腎臓(201)、肝臓(179)、肺(42.9)、副腎(40.8)、心臓(38.1)、鼻甲介(95.8)、骨髄(94.6)、副腎(80.4)、脾臓(36.7)、骨髄(26.3)、膵臓(18.6)、大腸(74.0)、血漿(64.9) (36.7)、骨髄(26.3)、膵臓(18.6)、大腸(14.2)、胃(13.7)、小腸(12.5)、皮膚(9.5)、大腿骨(9.4)、脳(8.1)、骨格筋(7.5)、腹部の脂肪(7.5)、血漿(6.1) 赤血球(1,320)、血液(809)、腎臓(240)、肝臓(194)、骨髄(181)、脾臓(55.9)、甲状腺(54.1)、心臓(43.6)、骨髄(159)、甲状腺(151)、副腎(125)、肺(40.9)、鼻甲介(37.5)、卵巣(30.9)、膵臓(119)、腹部の脂肪(110)、卵巣(96.4)、(20.4)、大腸(18.9)、胃(18.1)、小腸膵臓(77.6)、鼻甲介(73.0)、心臓(14.4)、腹部の脂肪(14.0)、子宮(12.8)、(14.4)、腹部の脂肪(14.0)、子宮(14.8) (14.4)、腹部の脂肪(14.0)、子宮(14.8) (14.4)、腹部の脂肪(14.0)、子宮(14.8) (14.4)、腹部			(7.63)、腎臓(4.40)、脾臓(2.76)、骨髄	腺(0.98)、副腎(0.93)、骨髄(0.67)、心臓
(1.82)、副腎(1.65)、膵臓(1.49)、心 (0.35)、膵臓(0.34)、大腸(0.30)、小腸 (1.38)、卵巣(1.16)、腹部の脂肪 (0.24)、大腿骨(0.20)、子宮(0.19)、脳 (0.14)、骨格筋(0.11)、皮膚(0.11)、腹部の脂肪(0.08)、血漿(0.07) 赤血球(1,010)、血液(602)、甲状腺 (277)、腎臓(201)、肝臓(179)、肺 (42.9)、副腎(40.8)、心臓(38.1)、鼻甲介 (95.8)、骨髄(94.6)、副腎(80.4)、脾臓 (74.0)、血漿(64.9) (14.2)、胃 (13.7)、小腸 (12.5)、皮膚 (9.5)、大腿骨(9.4)、胸(8.1)、骨格筋 (7.5)、腹部の脂肪(7.5)、血漿(6.1) 赤血球 (1,320)、血液(809)、腎臓 (240)、肝臓(194)、骨髄(181)、脾臓 (159)、甲状腺(151)、副腎(125)、肺 (40.9)、鼻甲介(37.5)、卵巣(30.9)、膵臓 (119)、腹部の脂肪(110)、卵巣(96.4)、(20.4)、大腸 (18.9)、胃 (18.1)、小腸 (14.4)、腹部の脂肪(14.0)、子宮(12.8)、		邮件	(2.68)、肺(2.63)、甲状腺(1.84)、鼻甲	(0.57)、鼻甲介(0.53)、卵巣(0.48)、胃
(1.10)、血漿(1.08) (0.14)、骨格筋(0.11)、皮膚(0.11)、腹部の脂肪(0.08)、血漿(0.07)		此性	介(1.82)、副腎(1.65)、膵臓(1.49)、心	(0.35)、膵臓(0.34)、大腸(0.30)、小腸
### (1,820)、小腸(1,180)、大腸(1,150)、 赤血球(989)、血液(517)、脾臓(74.6)、腎 赤血球(1,010)、血液(602)、甲状腺(60.9)、肺(59.8)、肝臓(54.5)、甲状腺(277)、腎臓(201)、肝臓(179)、肺(42.9)、副腎(40.8)、心臓(38.1)、鼻甲介(95.8)、骨髄(94.6)、副腎(80.4)、脾臓(14.2)、胃(13.7)、小腸(12.5)、皮膚(9.5)、大腿骨(9.4)、脳(8.1)、骨格筋(7.5)、腹部の脂肪(7.5)、血漿(6.1) 赤血球(1,320)、血液(809)、腎臓(240)、肝臓(194)、骨髄(181)、脾臓(55.9)、甲状腺(54.1)、心臓(43.6)、骨髄(159)、甲状腺(151)、副腎(125)、肺(19)、腹部の脂肪(110)、卵巣(96.4)、(20.4)、大腸(18.9)、胃(18.1)、小腸膵臓(77.6)、鼻甲介(73.0)、心臓(14.4)、腹部の脂肪(14.0)、子宮(12.8)、			臓(1.38)、卵巣(1.16)、腹部の脂肪	(0.24)、大腿骨(0.20)、子宮(0.19)、脳
胃(1,820)、小腸(1,180)、大腸(1,150)、 赤血球(989)、血液(517)、脾臓(74.6)、腎 赤血球(1,010)、血液(602)、甲状腺(277)、腎臓(201)、肝臓(179)、肺(42.9)、副腎(40.8)、心臓(38.1)、鼻甲介(95.8)、骨髄(94.6)、副腎(80.4)、脾臓(74.0)、血漿(64.9)			(1.10)、血漿(1.08)	(0.14)、骨格筋(0.11)、皮膚(0.11)、腹部
赤血球(1,010)、血液(602)、甲状腺 臓(60.9)、肺(59.8)、肝臓(54.5)、甲状腺(277)、腎臓(201)、肝臓(179)、肺 (42.9)、副腎(40.8)、心臓(38.1)、鼻甲介(95.8)、骨髄(94.6)、副腎(80.4)、脾臓(36.7)、骨髄(26.3)、膵臓(18.6)、大腸(74.0)、血漿(64.9) (14.2)、胃(13.7)、小腸(12.5)、皮膚(9.5)、大腿骨(9.4)、脳(8.1)、骨格筋(7.5)、腹部の脂肪(7.5)、血漿(6.1)				の脂肪(0.08)、血漿(0.07)
## (277)、腎臓(201)、肝臓(179)、肺 (42.9)、副腎(40.8)、心臓(38.1)、鼻甲介(95.8)、骨髄(94.6)、副腎(80.4)、脾臓 (74.0)、血漿(64.9) (14.2)、胃(13.7)、小腸(12.5)、皮膚 (9.5)、大腿骨(9.4)、脳(8.1)、骨格筋 (7.5)、腹部の脂肪(7.5)、血漿(6.1) 赤血球(1,320)、血液(809)、腎臓 (240)、肝臓(194)、骨髄(181)、脾臓 (159)、甲状腺(151)、副腎(125)、肺 (14.9)、鼻甲介(37.5)、卵巣(30.9)、膵臓 (194)、腹部の脂肪(110)、卵巣(96.4)、 (20.4)、大腸(18.9)、胃(18.1)、小腸 膵臓 (77.6)、鼻甲介(73.0)、心臓 (14.4)、腹部の脂肪(14.0)、子宮(12.8)、			胃(1,820)、小腸(1,180)、大腸(1,150)、	赤血球(989)、血液(517)、脾臓(74.6)、腎
雄 (95.8)、骨髄(94.6)、副腎(80.4)、脾臓 (36.7)、骨髄(26.3)、膵臓(18.6)、大腸 (74.0)、血漿(64.9) (14.2)、胃 (13.7)、小腸 (12.5)、皮膚 (9.5)、大腿骨 (9.4)、脳(8.1)、骨格筋 (7.5)、腹部の脂肪(7.5)、血漿(6.1) 赤血球 (1,320)、血液 (809)、腎臓 (240)、肝臓 (194)、骨髄 (181)、脾臓 (159)、甲状腺 (151)、副腎 (125)、肺 (199)、腹部の脂肪(110)、卵巣(96.4)、 (20.4)、大腸 (18.9)、胃 (18.1)、小腸 膵臓 (77.6)、鼻甲介 (73.0)、心臓 (14.4)、腹部の脂肪(14.0)、子宮(12.8)、			赤血球(1,010)、血液(602)、甲状腺	臟(60.9)、肺(59.8)、肝臟(54.5)、甲状腺
(74.0)、血漿(64.9) (14.2)、胃(13.7)、小腸(12.5)、皮膚(9.5)、大腿骨(9.4)、脳(8.1)、骨格筋(7.5)、腹部の脂肪(7.5)、血漿(6.1) mg/kg 体重 胃(2,440)、大腸(2,330)、小腸(1,450)、赤血球(1,300)、血液(648)、脾臓(114)、赤血球(1,320)、血液(809)、腎臓(89.3)、腎臓(85.8)、肝臓(68.2)、副腎(240)、肝臓(194)、骨髄(181)、脾臓(55.9)、甲状腺(54.1)、心臓(43.6)、骨髄(159)、甲状腺(151)、副腎(125)、肺(40.9)、鼻甲介(37.5)、卵巣(30.9)、膵臓(119)、腹部の脂肪(110)、卵巣(96.4)、(20.4)、大腸(18.9)、胃(18.1)、小腸膵臓(77.6)、鼻甲介(73.0)、心臓(14.4)、腹部の脂肪(14.0)、子宮(12.8)、			(277)、腎臓(201)、肝臓(179)、肺	(42.9)、副腎(40.8)、心臓(38.1)、鼻甲介
1,000 mg/kg 体重		雄	(95.8)、骨髄(94.6)、副腎(80.4)、脾臓	(36.7)、骨髄(26.3)、膵臓(18.6)、大腸
1,000 mg/kg 体重 胃(2,440)、大腸(2,330)、小腸(1,450)、 赤血球(1,320)、血液(809)、腎臓 (240)、肝臓(194)、骨髄(181)、脾臓 (159)、甲状腺(151)、副腎(125)、肺 (119)、腹部の脂肪(110)、卵巣(96.4)、 膵臓(77.6)、鼻甲介(73.0)、心臓(14.4)、腹部の脂肪(14.0)、子宮(12.8)、			(74.0)、血漿(64.9)	(14.2)、胃 (13.7)、小 腸 (12.5)、皮 膚
mg/kg 体重				(9.5)、大腿骨(9.4)、脳(8.1)、骨格筋
体重 赤 血 球 (1,320)、血 液 (809)、腎 臓 肺(89.3)、腎臓(85.8)、肝臓(68.2)、副腎(240)、肝臓(194)、骨髄(181)、脾臓 (55.9)、甲状腺(54.1)、心臓(43.6)、骨髄(159)、甲状腺(151)、副腎(125)、肺 (40.9)、鼻甲介(37.5)、卵巣(30.9)、膵臓(119)、腹部の脂肪(110)、卵巣(96.4)、(20.4)、大腸(18.9)、胃(18.1)、小腸膵臓(77.6)、鼻甲介(73.0)、心臓(14.4)、腹部の脂肪(14.0)、子宮(12.8)、	1,000			(7.5)、腹部の脂肪(7.5)、血漿(6.1)
世 (240)、肝臓(194)、骨髄(181)、脾臓 (55.9)、甲状腺(54.1)、心臓(43.6)、骨髄 (159)、甲状腺(151)、副腎(125)、肺 (40.9)、鼻甲介(37.5)、卵巣(30.9)、膵臓 (119)、腹部の脂肪(110)、卵巣(96.4)、 (20.4)、大腸(18.9)、胃(18.1)、小腸 膵臓(77.6)、鼻甲介(73.0)、心臓 (14.4)、腹部の脂肪(14.0)、子宮(12.8)、			胃(2,440)、大腸(2,330)、小腸(1,450)、	赤血球(1,300)、血液(648)、脾臟(114)、
雌 (159)、甲状腺(151)、副腎(125)、肺 (40.9)、鼻甲介(37.5)、卵巣(30.9)、膵臓 (119)、腹部の脂肪(110)、卵巣(96.4)、 (20.4)、大腸(18.9)、胃(18.1)、小腸 膵臓 (77.6)、鼻甲介(73.0)、心臓 (14.4)、腹部の脂肪(14.0)、子宮(12.8)、	体重		赤 血 球 (1,320)、血 液 (809)、腎 臓	肺(89.3)、腎臓(85.8)、肝臓(68.2)、副腎
^吨 (119)、腹部の脂肪(110)、卵巣(96.4)、 (20.4)、大腸 (18.9)、胃 (18.1)、小腸 膵臓 (77.6)、鼻甲介 (73.0)、心臓 (14.4)、腹部の脂肪(14.0)、子宮(12.8)、			(240)、肝臓(194)、骨髄(181)、脾臓	(55.9)、甲状腺(54.1)、心臓(43.6)、骨髄
(119)、腹部の脂肪(110)、卵果(96.4)、 (20.4)、大腸(18.9)、胃(18.1)、小腸 膵臓(77.6)、鼻甲介(73.0)、心臓 (14.4)、腹部の脂肪(14.0)、子宮(12.8)、		H/任	(159)、甲状腺(151)、副腎(125)、肺	(40.9)、鼻甲介(37.5)、卵巣(30.9)、膵臓
		川 生	(119)、腹部の脂肪(110)、卵巣(96.4)、	(20.4)、大腸(18.9)、胃(18.1)、小腸
(=1 o) → t→(oo o) / lb/(=1 o) BV T c b BU B (1 1 1) B b b b b (o o) 4 t b			膵臓(77.6)、鼻甲介(73.0)、心臓	(14.4)、腹部の脂肪(14.0)、子宮(12.8)、
(71.8)、子宮(60.9)、血漿(51.2) 脳及び大腿骨(11.4)、骨格筋(9.0)、皮膚			(71.8)、子宮(60.9)、血漿(51.2)	脳及び大腿骨(11.4)、骨格筋(9.0)、皮膚
(8.8)、血漿(6.6)				(8.8)、血漿(6.6)

a: 低用量群では投与9時間後、高用量群では投与32時間後

b: 高用量群では投与 96 時間後

③ 代謝

尿及び糞中排泄試験 [5.(1)④a. \sim c.] における尿、糞及び肝臓並びに胆汁中排泄試験 [5.(1)④d.] における胆汁を用いて代謝物同定・定量試験が実施された。

尿、糞、胆汁及び肝臓における代謝物は表 15 に示されている。

各試料中には多数の代謝物の存在が確認されたことから、ブタクロールが広範 に代謝されていると考えられた。

尿中には未変化のブタクロールは検出されなかった。主要代謝物は代謝物[15]、 [18]及び[23]であったが、いずれも 10%TAR 未満であった。

糞中では未変化のブタクロールが主要成分であった。多数の代謝物が存在したが、その多くは存在量がごく僅かであった。糞中の主要代謝物は代謝物[10]及び[62]であった。

胆汁中には 20 種類の代謝物が同定された。高用量群の主要代謝物は代謝物[4] 及び[55]であった。代謝物[55]は低用量群でも主要代謝物であった。

肝臓中には8種類の代謝物が同定され、 C_{max} 時点における主要代謝物として代謝物[15]、[23]、[43]、[50]が認められたほか、投与55時間後まで、胆汁、尿及び糞中には存在しなかった微量代謝物 (代謝物[20]) が検出された。(参照2、3、94)

表 15 尿、糞、胆汁及び肝臓における代謝物 (%TAR)

+九 ← 目.	性	lol(4 <i>€</i>	ブタク	∫.Þ.∃á±₩n
投与量	別	試料	ロール	代謝物
10		尿	_	$[23](2.5)$, $[15](2.3)$, $[18](2.0)$, $[16] \cdot [24]^a (1.6)$,
mg/kg	雄			[33](0.5)、12 種の未同定化合物(0.3~2.4)
体重		糞	3.2	個々の代謝物同定できず
単回経口		尿	_	$[15](7.4)$, $[23](2.0)$, $[16] \cdot [24]^a (1.7)$, $[18](1.2)$,
1	雌			[33](1.1)、13種の未同定化合物(0.2~1.8)
		糞	1.5	個々の代謝物同定できず [10](7 t)
		尿		$[18](5.1)$, $[16] \cdot [40]^a (4.7)$, $[23](3.1)$, $[22](2.6)$, $[15](1.5)$, $[19] \cdot [47] \cdot [48]^a (1.2)$, $[50](0.6)$, $[55]$
		爪		$[56]^{a}(0.5)$
		糞	1.77	[58](1.0)、[60](0.4)、[62](0.2)、[10](0.1)
	雄	夹	1.11	$[55](5.8)$, $[46](2.6)$, $[51] \cdot [52] \cdot [53]^a (2.2)$, $[6](1.9)$,
		胆汁	_	[39](1.8), [40](1.6), [45](1.3), [15](1.3), [7](1.0),
10		/3-11		$[42] \cdot [43] \cdot [44]^{a} (1.0), [57] (1.0), [59] (0.5), [4] (0.3)$
mg/kg		肝臓	_	[15]、[19]、[23]、[43]、[49](いずれも 0.001 以下)
体重		74 14/1/5		$[15](4.6), [19] \cdot [47] \cdot [48] \cdot [40] \cdot [40$
単回経口		尿	_	$[23](3.0)$, $[55] \cdot [56]^a(2.9)$, $[18](2.8)$, $[22](1.2)$,
2				[50](0.6)
		糞	5.02	[60](1.1), [58](0.7), [62](0.3), [10](0.3)
	雌			$[55](6.7), [51] \cdot [52] \cdot [53] \cdot [46](3.9), [6](2.8),$
		胆汁	_	[45](2.5), [39](2.1), [41](1.9), [40](1.9), [54](1.4),
				$[7](1.2), [15](1.1), [42] \cdot [43] \cdot [44] \cdot (1.1), [59](0.9),$
		11-7 11-Hz		[57](0.7), [4](0.6), [61](0.2)
		肝臓	_	[15]、[23]、[43](いずれも 0.001 以下)
1,000	雄	尿	_	[23](2.4)、[18](2.1)、[15](1.5)、[33](0.6)、 [16] [24](0.5) 15 無の共同字件執拗(0.85, 0.2)
mg/kg				[16]・[24]a(0.5)、15 種の未同定代謝物(0.2~2.3) [15](8.1)、[23](2.3)、[18](1.7)、[33](1.0)、
体重	雌	尿	_	[15](6.1)、 [25](2.5)、 [16](1.7)、 [35](1.0)、 [16]・[24]*(1.0)、 14種の未同定代謝物(0.1~1.7)
単回経口	雌		雄:8.4	[14](0.9)、[23](0.8)、[26](0.8)、[17](0.4)、[18](0.4)、
1	雄	糞	雌:8.3	[19](0.2)、[38](D)
	7-12-		ν-μ. ν. ο το	[16]·[40] ^a (4.5), [18](3.4), [23](3.0), [22](1.2),
		尿	_	$[15](0.9), [55] \cdot [56]^{a}(0.9), [50](0.8), [19] \cdot [47]$
				[48]a(0.5)
	雄	糞	12.4	[10](1.3), [62](0.8), [58](0.8), [60](0.3)
1,000		HE OL		[55](2.9), [4](2.9), [59](1.7), [7](1.5), [6](1.2),
mg/kg		胆汁	_	[15](0.8), [61](0.4)
体重		肝臓	_	[15]、[23]、[43](いずれも 0.001 未満)
単回経口		尿	_	$[16] \cdot [40]^{a}(4.5)$, $[23](3.2)$, $[55] \cdot [56]^{a}(3.2)$, $[18](2.8)$,
2			_ _	$[19] \cdot [47] \cdot [48]^{a}(2.1), [15](2.0), [22](1.1), [50](0.8)$
	雌	糞	2.68	[10](3.8), [58](1.6), [62](1.3), [60](0.5)
	和田	胆汁	_	[4](2.1), $[55](1.4)$, $[59](1.3)$, $[7](1.1)$, $[6](1.1)$,
				[15](0.5), [54](0.3), [61](0.3)
		肝臓	_	[15]、[23]、[43](いずれも 0.001 以下)

投与量	性別	試料	ブタク ロール	代謝物
10	雄	尿	_	[15](1.5)、[23](1.3)、[16]·[24]a(1.0)、[18](0.8)、 [33](0.5)、17種の未同定化合物(0.2~1.8)
mg/kg		糞	1.1	個々の代謝物同定できず
体重/日 反復経口	雌	尿	_	[15](3.0)、[23](2.3)、[16]·[24]a(1.3)、[18](1.1)、 [19](1.0)、[33](0.8)、17 種の未同定化合物(0.2~1.3)
		糞	1.0	個々の代謝物同定できず

- 注)・尿、糞及び肝臓については、低用量群①及び高用量群①は投与後 240 時間、低用量群②では 投与後 72 時間、高用量群②では投与後 96 時間採取した試料が用いられた。
 - ・胆汁については投与後48時間採取した試料が用いられた。
 - -:検出されず D:検出 a:2種以上の代謝物の合計。

4 排泄

a. 尿及び糞中排泄(単回経口投与)-1

SD ラット(一群雌雄各 3 匹) に[phe-14C]ブタクロール及び ¹³C-ブタクロール の混合物を低用量又は高用量で単回経口投与して、尿及び糞中排泄試験が実施された。

投与後 48 時間及び試験終了時(低用量群で投与後 72 時間、高用量群で投与後 96 時間)までの尿及び糞中排泄率は表 16 に、試験終了時の尿及び糞中排泄率並 びにカーカス、ケージ洗浄液及び組織残留率は表 17 に示されている。

雌雄、投与量にかかわらず糞中への排泄が尿中より多かった。投与後 48 時間の尿及び糞中の排泄率は低用量群で 89.9%TAR~90.5%TAR、高用量群で63.0%TAR~80.9%TARであり、高用量群でやや排泄が遅かった。(参照 2、94)

表 16 投与後 48 時間及び試験終了時までの尿及び糞中排泄率(%TAR)

投与量		10 mg/	kg 体重	g 体重		1,000 mg/kg 体重		
性別	雄		雌		雄		雌	
試料	尿	糞	尿	糞	尿	糞	尿	糞
投与後 48 時間	34.4	56.1	35.5	54.4	25.0	55.9	29.2	33.8
試験終了時a	35.0	57.4	36.1	55.6	27.4	60.7	36.0	49.4

a: 低用量群では投与後 72 時間、高用量群では投与後 96 時間

表 17 試験終了時の尿及び糞中排泄率並びにカーカス、ケージ洗浄液及び組織残留率

投与量	10 mg/kg 体重		1,000 mg	g/kg 体重
性別	雄	雌	雄	雌
尿	35.0	36.1	27.4	36.0
糞	57.4	55.6	60.7	49.4
カーカス	1.45	1.67	1.23	1.22
ケージ洗浄液	1.20	1.47	3.62	2.22
組織 a	2.64	3.31	1.78	1.89
消化管内容物	0.42	0.29	0.11	0.14

注) 試験終了時: 低用量群では投与72時間後、高用量群では投与96時間後

a: 全血及び組織・臓器中放射能の合計

b. 尿及び糞中排泄(単回経口投与)-2

SD ラット (一群雌雄各 5 匹) に $[phe^{-14}C]$ ブタクロール及び ^{13}C -ブタクロールの混合物を低用量又は高用量で単回経口投与して、排泄試験が実施された。

投与後 48 時間及び試験終了時(投与後 240 時間)までの尿及び糞中排泄率は表 18 に、試験終了時の尿及び糞中排泄率並びにカーカス、ケージ洗浄液及び組織残留率は表 19 に示されている。

雌雄、投与量にかかわらず糞中への排泄が尿中より多かった。投与後 48 時間の尿及び糞中の排泄率は低用量群で 86.9%TAR~88.3%TAR、高用量群で77.6%TAR~84.2%TARであり、高用量群でやや排泄が遅かった。(参照 3、94)

27. 27. 21.							,,,	•	
投与量	10 mg/kg 体重				1,000 mg/kg 体重				
性別	左	雄		雌		雄		雌	
試料	尿	糞	尿	糞	尿	糞	尿	糞	
投与後 48 時間	26.0	62.3	33.2	53.7	22.4	61.8	27.6	50.0	
試験終了時	27.2	64.1	34.7	55.3	24.6	66.1	30.3	53.4	

表 18 投与後 48 時間及び試験終了時までの尿及び糞中排泄率(%TAR)

表 19 試験終了時の尿及び糞中排泄率並びにカーカス、ケージ洗浄液及び組織残留率

投与量	10 mg/	kg 体重	1,000 mg/kg 体重		
性別	雄	雌	雄	雌	
尿	27.2	34.7	24.6	30.3	
糞	64.1	55.3	66.1	53.4	
カーカス	1.32	1.53	0.30	1.35	
ケージ洗浄液	0.33	0.37	1.16	2.33	
組織	0.33	0.48	1.18	0.38	

c. 尿及び糞中排泄(反復経口投与)

SD ラット(一群雌雄各 3~5 匹)に $[phe^{-14}C]$ ブタクロール及び ^{13}C -ブタクロールの混合物を低用量で反復経口投与(非標識ブタクロールを 14 日間投与後、 15 日目に標識体を単回投与)して、尿及び糞中排泄試験が実施された。

最終投与後 48 及び 240 時間の尿及び糞中排泄率は表 20 に、試験終了時の尿及び糞中排泄率並びにカーカス、ケージ洗浄液及び組織残留率は表 21 に示されている。

単回経口投与群と同様、糞中への排泄が尿中より多かった。投与後 48 時間の 尿中及び糞中への排泄は 79.4%TAR~84.5%TAR であり、単回経口投与群よりも 排泄速度が遅かった。 (参照 3、94)

表 20 最終投与後 48 及び 240 時間の尿及び糞中排泄率 (%TAR)

投与量	10 mg/kg 体重/日				
性別	左	准	雌		
試料	尿	糞	尿	糞	
最終投与後 48 時間	30.9	53.6	36.1	43.3	
最終投与後 240 時間	33.5	57.9	39.7	53.0	

表 21 試験終了時の尿及び糞中排泄率並びにカーカス、ケージ洗浄液及び組織残留率

性別	雄	雌
尿	33.5	39.7
糞	57.9	53.0
カーカス	1.66	2.23
ケージ洗浄液	1.31	2.17
組織	1.03	1.78

d. 胆汁中排泄

胆管カニューレを挿入した SD ラット (一群雌雄各 3 匹) に[phe- 14 C]ブタクロール及び 13 C-ブタクロールの混合物を低用量又は高用量で単回経口投与し、胆汁中排泄試験が実施された。

投与後48時間の胆汁中排泄率は表22に示されている。

低用量群では胆汁中に投与後 48 時間で 43.8%TAR \sim 48.1%TAR が排泄され、主に胆汁中に排泄されることが確認された。高用量群での胆汁中への排泄率は 14.6%TAR \sim 19.7%TAR であり、低用量群と比べ明らかな相違がみられた。これは、高用量群において吸収速度が遅いことを反映していると考えられた。(参照 2、94)

表 22 投与後 48 時間の胆汁中排泄率 (%TAR)

投与量	10 mg/	kg 体重	1,000 mg/kg 体重		
性別	雄 雌		雄	雌	
排泄率	43.8	48.1	19.7	14.6	

(2) ラット(静脈内投与)

SD ラット (一群雌雄各 $6\sim12$ 匹) に[phe- 14 C]ブタクロール及び 13 C-ブタクロールの混合物を 1、10 又は 100 mg/kg 体重で単回静脈内投与し、動物体内動態試験が実施された。

① 分布

投与120時間後の血球、全血及び血漿中の放射能濃度は表23に示されている。 血漿と血球中の放射能の比率より、全血中の放射能の大部分は血球成分と結合 していると考えられた。 その他の組織では、投与 120 時間後で肝臓、腎臓、肺、心臓及び骨髄に比較的 残留放射能が多かったが、これは組織中に残っていた血液によるものであると考 えられた。また、いずれも残留放射能は 0.5%TAR 未満であった。(参照 4、94)

表 23 投与 120 時間後の血球、全血及び血漿中の放射能濃度 (µg/g)

投与量	性別	投与 120 時間後
1 mg/kg 体重	雄	血球(1.26)、全血(0.738)、血漿(0.004)
I mg/kg 冲里	雌	血球(1.57)、全血(0.921)、血漿(0.008)
10 11 44	雄	血球(13.1)、全血(8.43)、血漿(0.04)
10 mg/kg 体重	雌	血球(15.3)、全血(9.26)、血漿(0.043)
100 /大手	雄	血球(122)、全血(96.4)、血漿(0.452)
100 mg/kg 体重	雌	血球(143)、全血(89.1)、血漿(0.427)

② 代謝

尿中には未変化のブタクロールは検出されず、35 種類以上の代謝物が存在した。そのほとんどは少量(0.2%TAR 未満)であったが、1%TAR 以上存在する代謝物が代謝物[18]、[22]、[23]など 8 種類同定された。

糞中代謝物は複雑であり、2 種類の代謝物(代謝物[10]及び[22]) が同定されたが、ほかの成分は同定されなかった。

経口投与及び静脈内投与試験において、同じ種類の代謝物が同定されたことから、ブタクロールは投与経路にかかわらず同じ代謝経路で代謝されることが示された。すなわち、ブタクロールの代謝経路として①グルタチオン抱合及びそれに続くメルカプツール酸の生成、②フェニル基、エチル基及びブトキシメチル基の酸化的水酸化、③アミド結合の開裂、④ブトキシメチル基の ω -酸化が示唆された。(参照 4、94)

③ 排泄

投与後48時間及び120時間の尿及び糞中排泄率は表24に示されている。

投与後 120 時間の排泄では、糞中排泄は雄の方が雌より多く、尿中排泄は雌の方が雄より多かった。雌雄とも糞中にかなりの放射能が排泄されたことから、静脈内投与されたブタクロールは肝臓を介して速やかに胆汁中に排泄されることが示唆された。(参照 4、94)

表 24 投与後 48 及び 120 時間の尿及び糞中排泄率 (%TAR)

投与量	1 mg/kg 体重			10 mg/kg 体重			100 mg/kg 体重					
性別	左	隹	Щ	准	左	隹	Щ	维	厷	准	Щ	准
試料	尿	糞	尿	糞	尿	糞	尿	糞	尿	糞	尿	糞
投与後 48 時間	20.5	55.7	26.4	43.3	17.1	62.4	28.4	50.0	17.0	52.1	26.7	43.6
投与後 120 時間	21.9	58.5	29.2	46.3	18.5	65.1	30.1	52.7	18.8	58.8	29.1	48.2

(3) サル(静脈内投与)

① 血中濃度推移

アカゲザル (一群雌雄各 2 匹) に $[phe^{-14}C]$ ブタクロールを単独で又は非標識ブタクロールと混合 (標識体: 非標識体混合比 1:6.8) し、個体当たり 0.1 又は 5.0 mg で静脈内投与して、血中濃度推移が検討された。

全血中における $T_{1/2}$ は表 25 に示されている。ブタクロールは投与後、全血中から二相性の減衰を示した。 (参照 5、94)

_	-· <u>-</u>		1 "24771
投与量		0.1 mg/個体	5.0 mg/個体
/D (1)	α相	3.01	3.60
$T_{1/2}(hr)$	8相	116	101

表 25 全血中における消失半減期

② 代謝

アカゲザル (一群雌雄各 3 匹) に $[phe^{-14}C]$ ブタクロールを ^{13}C -ブタクロール又は非標識ブタクロールと混合し、1 又は 10 mg/kg 体重で単回静脈内投与して、代謝物同定・定量試験が実施された。

ブタクロールは速やかに、広範に代謝された。尿中の主要代謝物は代謝物[2] であり、1 mg/kg 体重投与群で $2.1\%TAR \sim 2.6\%TAR$ 、10mg/kg 体重投与群で $5.1\%TAR \sim 6.4\%TAR$ 存在した。また、代謝物[3]、[4]、[5]及び[15]が同定されたほか、多数の代謝物の存在が示唆された。

糞中には多種類の少量成分の存在が示唆された。

サルの尿中の主要代謝物[2]はラットの尿中には存在しなかった。ラット静脈内投与時の尿中の主要代謝物[22]はサルの尿中には検出されなかった。また、サル尿中にはラットの尿中より多くの種類の代謝物が含まれていることが示唆された。 (参照 6、94)

③ 排泄

アカゲザル (一群雌雄各 2 匹) に $[phe^{-14}C]$ ブタクロールを単独又は非標識ブタクロールと混合し、個体当たり 0.1 又は 5.0 mg で単回静脈内投与して、排泄試験が実施された。

尿中には投与後 12 日間で 54.7%TAR \sim 57.4%TAR が排泄された。このうち $77.5\%\sim$ 87.5%は投与後 24 時間で排泄された。糞中の排泄は 34.7%TAR \sim 39.0%TAR であり、そのうち $42.2\%\sim$ 56.7%が投与後 24 時間で、 $77.7\%\sim$ 89.2% が投与後 48 時間で排泄された。

また、アカゲザル(一群雌雄各 3 匹)に $[phe^{-14}C]$ ブタクロールを ^{13}C -ブタクロール又は非標識ブタクロールと混合して、1 又は 10 mg/kg 体重で単回静脈内投与する排泄試験が実施された。

投与後 168 時間 (7 日間) で尿中に 57.4% TAR \sim 62.0% TAR、糞中に 36.9% TAR \sim 42.3% TAR が排泄された。 ラットと異なり、サルではブタクロールは主に尿中に排泄された。 (参照 5、6、94)

(4) ラット及びマウスにおける分布及び排泄の比較

分布及び排泄に関してラット及びマウスの種差、系統差を調べる目的で、SD ラット、Long-Evans ラット(L-E ラット)、Fischer ラット及び ICR マウス(一群雌雄各 2 匹)に[phe- 14 C]ブタクロール及び 13 C-ブタクロールの混合物を 7 又は 70 mg/kg 体重で単回経口投与して、動物体内動態試験が実施された。

投与後120時間の尿及び糞中排泄の系統及び種間比較は表26に示されている。 いずれも主に糞中に排泄されたが、尿/糞比³はラットの系統間で0.25~0.65、 ICR マウスで0.81 と、種差及び系統差が認められた。

組織分布では、各系統間及び種間で顕著な差は認められず、投与 24 時間後には腸内容物、肝臓、心臓、肺、腎臓に共通して残留放射能が認められた。投与 120 時間後には、ラット、マウスとも肝臓、心臓、肺、血液及び腎臓に放射能の残留が認められた。ラットでは腸に低レベルの放射能が残留していたが、マウスでは腸管内の放射能は大部分消失していた。

また、オートラジオグラフィーを実施してブタクロールの鼻部への局在を確認 した。ラットでは系統間にレベルの差はあったものの、いずれも鼻部への局在が 認められたが、マウスでは鼻部への局在化は明らかではなかった。(参照 7、94)

_

³ 尿中総排泄率を糞中総排泄率で割って算出。

表 26 投与後 120 時間の尿及び糞中排泄の系統及び種間比較

尿・糞中累積排泄率(%TAR)								
採取時間	SD 5	ラット	L-E ラット Fischer ラット		ICR マウス			
	尿	糞	尿	糞	尿	糞	尿	糞
120 時間	25.7	63.1	17.6	69.9	35.4	54.4	34.6	42.6
尿/糞比	0.	41	0.25		0.65		0.81	

(5) 血液結合性に関する種間比較 (in vitro)

ヒト、サル(アカゲザル及びマカク属の別種のサル)、Long-Evans ラット及び ICR マウスの全血を、[phe-14C]ブタクロール存在下で 30 分又は 24 時間インキュベートし、ブタクロールの血液結合性に関する種間比較試験が実施された。 30 分間インキュベート後には、ラットでは、血液中の総残留放射能に対するヘモグロビンに結合する放射能の割合が、ほかの動物より高かった。24 時間インキュベート後には、その傾向は更に顕著であり、ヘモグロビンに結合する放射能は、ラットでは 78.1%TRR であったのに対し、マウスでは 13%TAR、サルでは 17%TAR~29%TAR、ヒトでは 10%TRR であった。

したがって、ラットのヘモグロビンはブタクロールに対する反応性において、 ほかの動物種(マウス、サル及びヒト)に比べ強力な結合性を有すると考えられ た。(参照 8、94)

6. 急性毒性試験等

(1) 急性毒性試験(経口投与)

ブタクロール (原体) を用いた急性毒性試験 (経口投与) が実施された。 各試験の結果は表 27 に示されている。 (参照 26、27、94、96)

表 27 急性毒性試験結果概要 (経口投与)

動物種	LD ₅₀ (mg	/kg 体重)	佐日 左 とうこと デカリ			
性別・匹数	雄	雌	観察された症状			
Fischer ラット 雌雄各 10 匹 (参照 26)	2,620	3,050	投与量: 雄:1,500、1,740、2,018、2,341、2,716、3,151、3,655、4,239、4,918 mg/kg 体重 雌:2,018、2,341、2,715、3,150、3,654、4,238、4,917、5,703 mg/kg 体重 雄:1,500 mg/kg 体重以上 雌:2,018 mg/kg 体重以上 不活発化、立毛、流涙(投与 3 時間後~3 日後) 雄:1,740 mg/kg 体重以上で死亡例 雌:2,341 mg/kg 体重以上で死亡例 剖検例で肝臓の硬化及び脾腫			
Fischer ラット 雌 6 匹 ^a (参照 96)		>2,000	投与量: 2,000 mg/kg 体重 症状及び死亡例なし			
ICR マウス 雌雄各 10 匹 (参照 27)	4,140	5,030	投与量: 雄:3,000、3,600、4,320、5,184、6,221 mg/kg 体重 雌:3,600、4,320、5,184、6,221、7,465 mg/kg 体重 雌雄:立毛、尾の退色、軟便、皮膚温の低下(発現用量 及び発現時期不明) 雌雄:4,320 mg/kg 体重以上で死亡例			

a:毒性等級法で評価。

(2) 一般薬理試験

ラット、マウス、ウサギ及びモルモットを用いた一般薬理試験が実施された。 結果は表 28 に示されている。 (参照 25、94)

表 28 一般薬理試験概要

			12 2	1			,
看	犬験の種類	動物種	動物数 匹/群	世	最大 無作用量 (mg/kg 体重)	最小 作用量 (mg/kg 体重)	結果の概要
中枢神経	一般症状 (Irwin 法)	ICR マウス	雌雄各 5	0、125、210、 350、600、 1,000 (腹腔内) ^a	210	350	受動態、反応性、自 発運動の低下、眼瞼 下垂、認知力の低 下、運動性の低下、 自律神経系の抑制、 中枢性興奮、苦悶反 応、眼球突出、体温 下降、流涙、軟便 1,000 mg/kg 体重 は雌雄全例死亡
系	一般症状 (Kirk, Steiber 法)	日本白色種ウサギ	雌雄各3	0、1,000、 2,300、5,000 (経口)	5,000	_	投与による影響 なし
	体温	日本白色種ウサギ	雌雄各 2	0、1,000、 2,300、5,000 (経口)	5,000	_	投与による影響 なし
自律如	瞳孔径	日本白色種ウサギ	雌雄各 2	0、1,000、 2,300、5,000 (経口)	5,000	I	投与による影響 なし
神経系	摘出回腸	Hartley モルモット	雄 6	0、10 ⁻⁸ ~10 ⁻⁴ g/mL (<i>in vitro</i>) ^b	10-7	10-6	ACh、His による収 縮に対しての収縮 抑制
呼吸循環器系	呼吸 血流量 心拍数 心電図	日本白色種ウサギ	雄 3	0、50、150 (静脈内)	50	150	一過性の呼吸数の 増加並びに血圧、心 拍数及び血流量の 低下
消化器系	腸管炭末 輸送能	SD ラット	雄 6	0、314、500、 790、1,300 (腹腔内) ^a	1,300	I	投与による影響 なし
骨格筋	前頚骨筋 収縮	日本白色種 ウサギ	雄 3	0、50、150 (静脈内)	150	_	投与による影響 なし
血液	溶血	日本白色種ウサギ	雄 1	0、10 ⁻⁶ ~10 ⁻³ g/mL (<i>in vitro</i>) ^a	10 ⁻⁴	5×10 ⁻⁴	溶血性が認められ た
系 系	血液凝固	日本白色種 ウサギ	雄 3	0、1,000、 2,300、5,000 (経口)	5,000	_	投与による影響 なし

注)-:最小作用量は設定できなかった。 検体は、a:1%CMC溶液、b:PEG400溶液に懸濁して用いた。ほかの試験は原液を用いた。

7. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)①

Fischer ラット (一群雌雄各 12 匹) を用いた混餌投与 (原体:0、300、1,000、3,000 及び 5,000 ppm: 平均検体摂取量は表 29 参照) による 90 日間亜急性毒性試験が実施された。

表 29 90 日間亜急性毒性試験 (ラット) ①の平均検体摂取量

投与群		300 ppm	1,000 ppm	3,000 ppm	5,000 ppm
平均検体摂取量	雄	17.5	58.7	177	305
(mg/kg 体重/日)	雌	19.0	62.7	186	313

死亡例は認められなかった。

各投与群で認められた毒性所見は表30に示されている。

本試験において、1,000 ppm 以上投与群の雄で体重増加抑制等が、雌で膀胱上皮過形成等が認められたことから、無毒性量は雌雄とも 300 ppm (雄: 17.5 mg/kg体重/日、雌: 19.0 mg/kg体重/日)であると考えられた。 (参照 34、94)

表 30 90 日間亜急性毒性試験 (ラット) ①で認められた毒性所見

投与群	雄	雌
5,000 ppm	・Hb 減少	・尿 pH 低下
	・BUN、Glob 増加、ナトリウム減少	
	•膀胱上皮過形成	
3,000 ppm	・WBC、Lym 増加	・体重増加抑制(投与3週以降b)、摂
以上	・ALT、GGT、TP、Alb 増加	餌量減少(投与1週以降)、食餌効率
	・ウロビリノーゲン減少	低下
	・肝及び腎絶対重量増加	・RBC、Ht、Hb 減少
		・GGT 増加
		・肝及び腎比重量増加
		・び漫性肝細胞肥大
1,000 ppm	・体重増加抑制(投与 5~7 週 a)	・T.Chol 増加
以上	・T.Chol 増加	・膀胱上皮過形成
	・尿 pH 低下、尿沈渣上皮細胞増加	
	・肝及び腎比重量4増加	
	・び漫性肝細胞肥大	
300 ppm	毒性所見なし	毒性所見なし

a: 3,000 ppm 以上投与群では投与 1 週以降

_

b: 5,000 ppm 投与群では投与 1 週以降

⁴ 体重比重量を比重量という(以下同じ。)。

(2) 90 日間亜急性毒性試験 (ラット) ②<参考資料5>

SD ラット (一群雌雄各 20 匹) を用いた混餌投与 (原体:0、1,000、5,000、7,500 及び 15,000 ppm: 平均検体摂取量は表 31 参照) による 90 日間亜急性毒性試験が実施された。

表 31 90 日間亜急性毒性試験 (ラット) ②の平均検体摂取量

	投与群		1,000 ppm	5,000 ppm	7,500 ppm	15,000 ppm
-	平均検体摂取量	雄	50.3	277	419	865
((mg/kg 体重/日)	雌	79.7	386	592	1,070

各投与群で認められた毒性所見は表 32 に示されている。

1,000 ppm 投与群の雌で肝臓の絶対重量及び比重量の増加がみられたが、肝毒性を示唆する血液生化学的パラメータの変化及び病理組織学的変化が認められなかったことから適応性変化であると考えられた。

本試験において、1,000 ppm 以上投与群の雄及び 5,000 ppm 以上投与群の雌で肝臓の絶対及び比重量増加、甲状腺の比重量増加等が認められた。(参照 35、94)

31

⁵ より実施年が新しく、より低用量まで実施された試験 [7.(1)] により、本剤のラットに対する亜 急性毒性の評価は可能と考えられたことから、参考資料とした。

表 32 90 日間亜急性毒性試験 (ラット) ②で認められた毒性所見

		一 これのグライのでは1エババラ
投与群	雄	雌
15,000 ppm	・脱毛、削痩(発現時期不明)	・死亡(1 例:投与 46 日)
	・ALT 増加	・脱毛、削痩(発現時期不明)
	・Glu、Alb、カルシウム減少	・ALP 増加
	・尿比重及び pH 低下、ウロビリノ	・Alb、TP、カルシウム減少
	ーゲン減少	・尿比重及び pH 低下、ウロビリノ
	•慢性限局性腎炎、尿細管腔内尿円	ーゲン減少
	柱、尿細管上皮再生、腎乳頭部集	•慢性限局性腎炎、尿細管腔内尿円
	合管のう胞状拡張	柱、尿細管上皮再生、腎乳頭部集
	・胆管過形成	合管のう胞状拡張
		胆管過形成、肝細胞変性
7,500 ppm	• 食餌効率低下	• 食餌効率低下
以上		•甲状腺絶対重量増加§1
5,000 ppm	・体重増加抑制(投与 1 週以降)、摂	・体重増加抑制(投与 1 週以降)、摂
以上	餌量減少(投与1週a)	餌量減少(投与1週b)
	・RBC 減少§2	・網状赤血球数増加§3
	網状赤血球数増加	・T.Chol 増加
	・T.Chol 増加	・Glu 減少
	• 肝細胞変性	肝絶対及び比重量増加
		• 甲状腺比重量増加
1,000 ppm	・肝絶対§4及び比重量増加	1,000 ppm
以上	・甲状腺絶対§4及び比重量増加	毒性所見なし

^{§1:7,500} ppm 投与群で統計学的有意な増加が認められており、検体投与の影響と判断した。

(3)90日間亜急性毒性試験(マウス)

ICR マウス (一群雌雄各 30 匹) を用いた混餌投与 (原体:0、1,000、3,000 及び 6,000 ppm、平均検体摂取量は表 33 参照) による 90 日間亜急性毒性試験が実施された。

表 33 90 日間亜急性毒性試験(マウス)の平均検体摂取量

投与群		1,000 ppm	3,000 ppm	6,000 ppm
平均検体摂取量 雄		214	673	1,290
(mg/kg 体重/日)	雌	248	729	1,490

各投与群で認められた毒性所見は表34に示されている。

1,000 ppm 以上投与群の雄及び 3,000 ppm 以上投与群の雌で、肝臓の絶対及び比重量の増加がみられたが、肝毒性を示唆する血液生化学的パラメータの変化

^{§2:5,000} 及び 7,500 ppm 投与群で統計学的有意な増加が認められており、当該投与群における検体投与の影響と判断した。

^{§3:5,000} ppm 投与群で統計学的有意な増加が認められており、当該投与群における検体投与の影響と判断した。

 $[\]S^4$: 1,000、5,000 及び 7,500 ppm 投与群で統計学的有意な増加が認められており、当該投与群における検体投与の影響と判断した。

a: 15,000 ppm 投与群では投与 1~5 週

b: 15,000 ppm 投与群では投与 1~7 週

及び病理組織学的変化が認められなかったことから適応性変化であると考えられた。

本試験において、3,000 ppm 以上投与群の雌雄で体重増加抑制等が認められたことから、無毒性量は雌雄とも 1,000 ppm (雄: 214 mg/kg 体重/日、雌: 248 mg/kg 体重/日)であると考えられた。 (参照 36、94)

表 34 90 日間亜急性毒性試験(マウス)で認められた毒性所見

投与群	雄	雌
6,000 ppm	・切迫と殺(1 例:投与 78 日)	·体重減少(投与1週)/増加抑制(投与
	・外陰部の着染	2 週以降)
	脳絶対重量減少	・脳 ChE 活性減少(20%未満)
		・卵巣絶対及び比重量減少
		・脾絶対及び比§重量減少
		・心絶対重量減少
		・尿細管再生
		・腎近位尿細管拡張
3,000 ppm	・体重減少(投与 1 週)及び増加抑制	·体重增加抑制(投与 4 週以降)
以上	(投与2週以降)	
1,000 ppm	毒性所見なし	毒性所見なし

^{§:} 統計学的有意差は認められないが、検体投与の影響と判断した。

8. 慢性毒性試験及び発がん性試験

(1) 1年間慢性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 6 匹) を用いたカプセル経口投与 (原体:0、1、5 及 び 25 mg/kg 体重/日) による 1 年間慢性毒性試験が実施された。

各投与群で認められた毒性所見は表35に示されている。

投与 19 週時に、1 mg/kg 体重/日投与群の雄 1 例が死亡したが、死因は出血性肺炎と診断され、検体投与には無関係と考えられた。

本試験において、25 mg/kg 体重/日投与群の雌雄で肝臓の絶対及び比重量増加等が認められたことから、無毒性量は雌雄とも5 mg/kg 体重/日と考えられた。 (参照38、94)

表 35 1年間慢性毒性試験(イヌ)で認められた毒性所見

投与群	雄	雌
25 mg/kg 体重/日	・T.Chol 増加 ・肝絶対及び比重量増加 ・小葉周辺性又はび漫性肝細胞 肥大	・ALP 増加・肝絶対及び比重量増加・膵絶対及び比重量増加・小葉周辺性又はび漫性肝細胞肥大・膵外分泌腺細胞肥大
5 mg/kg 体重/日 以下	毒性所見なし	毒性所見なし

(2) 2年間慢性毒性/発がん性併合試験(ラット)①

Fischer ラット (一群雌雄各 90 匹) を用いた混餌投与 (原体:0、10、100 及び 1,000 ppm: 平均検体摂取量は表 36 参照) による 2 年間慢性毒性/発がん性併合試験が実施された。

表 36 2年間慢性毒性/発がん性併合試験(ラット)①の平均検体摂取量

投与群		10 ppm	100 ppm	1,000 ppm
平均検体摂取量	雄	0.365	3.65	37.1
(mg/kg 体重/日)	雌	0.432	4.33	43.4

検体投与による死亡率の上昇は認められなかった。

各投与群で認められた毒性所見は表 37 に示されている。腫瘍性病変については、肝細胞腺腫及び肝細胞癌の発生頻度が表 38 に示されている。

個々の腫瘍の発生頻度には対照群と検体投与群の間に統計学的有意差は認められなかったが、肝細胞腺腫と肝細胞癌を併せた発生頻度を比較した場合には、1,000 ppm 投与群の雄で対照群との間に有意差が認められた。しかし、肝細胞癌の発生頻度に用量相関性は認められなかったこと、また、本試験を実施した試験機関における背景データ(平均:4.2%、範囲:1.3%~7.5%)と比べると本試験の対照群における腫瘍発生頻度(0%)が低いことも考えると、肝細胞腫瘍の増加と検体投与との関連性はないものと考えられた。その他の腫瘍性病変に検体投与と関連した発生頻度の増加は認められなかった。

本試験において、1,000 ppm 投与群の雌雄で体重増加抑制等が認められたことから、無毒性量は雌雄とも 100 ppm(雄:3.65 mg/kg 体重/日、雌:4.33 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 39、94)

表 37 2年間慢性毒性/発がん性併合試験 (ラット) ①で認められた毒性所見 (非腫瘍性病変)

	(7. 1.—133.—1.32.	
投与群	雄	雌
1,000 ppm	· 体重增加抑制(投与 4 週以降)	· 体重增加抑制(投与 5 週以降)
	・GGT、TG、BUN、Cre、T.Bil 増	・GGT、TG 増加
	加	・肝絶対§及び比重量増加、腎絶対及
	・尿比重低下	び比重量増加
	・肝絶対及び比重量増加、腎絶対及	• 慢性腎症
	び比重量増加	•膀胱粘膜上皮過形成、粘膜下水腫
	・び漫性肝細胞肥大	・白内障、網膜萎縮/変性
	· 変異肝細胞巣(混合型)	
	•慢性腎症、限局性尿細管上皮過形	
	成、腎盂上皮過形成	
	•膀胱粘膜上皮過形成	
100 ppm 以下	毒性所見なし	毒性所見なし

^{§:}統計学的有意差は認められないが、検体投与の影響と判断した。

表 38 肝細胞腺腫及び肝細胞癌の発生頻度

性別	雄				雌			
投与群(ppm)	0	10	100	1,000	0	10	100	1,000
検査動物数	80	80	80	80	80	80	80	80
肝細胞腺腫	0	0	2	3	0	1	0	2
肝細胞癌	0	2	0	2	0	0	0	0
合計	0	2	2	5*	0	1	0	2

Fisher の直接確率検定法 *: p<0.05

(3) 2年間慢性毒性/発がん性併合試験(ラット)②

SD ラット (一群雌雄各 80 匹) を用いた混餌投与 (原体:0、100、1,000 及び 3,000 ppm: 平均検体摂取量は表 39 参照) による 2 年間慢性毒性/発がん性併合試験が実施された。

表 39 2年間慢性毒性/発がん性併合試験 (ラット) ②の平均検体摂取量

投与群		100 ppm	1,000 ppm	3,000 ppm
平均検体摂取量	雄	4.5	45.6	139
(mg/kg 体重/日)	雌	5.7	58.5	190

1,000 ppm 以上投与群の雌雄で死亡率が軽度に上昇した。

各投与群で認められた毒性所見は表 40 に示されている。

全投与群の雄で肉眼的病理所見として精巣の小型化が認められたが、この所見を示す動物の大部分は試験途中に死亡し、また途中死亡動物については臓器重量を測定しなかったため、精巣重量には反映されていない。

腫瘍性病変については、胃、甲状腺及び鼻部の腫瘍性病変の発生動物数が表

41 に示されている。また、腫瘍の組織学的特徴と細胞起源を明らかにするために再評価が実施された胃組織に認められた前癌病変、初期腫瘍及び腫瘍性病変の発生頻度については、表 42 に示されている。

胃における腫瘍は 3,000 ppm 投与群にのみ認められ、同投与群の雌で対照群と比べ発生動物数が有意に増加した。甲状腺ろ胞腫瘍及び鼻粘膜腺腫の発生動物数が 3,000 ppm 投与群の雄及び 1,000 ppm 以上投与群の雌で有意に増加した。その他の腫瘍性病変に、検体投与と関連した発生頻度の増加は認められなかった。さらに、病理パネルミーティング6によって再度再評価が実施され、ブタクロールのラットを用いた 2 年間慢性毒性/発がん性併合試験②における胃腫瘍診断名及び発生頻度は表 43 のとおりであった。パネルミーティングによる再評価の結果、3,000 ppm 投与群の雌において腺胃腫瘍発生動物数及び悪性神経内分泌細胞腫の有意な増加が認められた。

本試験において、100 ppm 以上投与群の雌雄で慢性腎症が認められたことから、無毒性量は雌雄とも 100 ppm 未満(雄:4.5 mg/kg 体重/日未満、雌:5.7 mg/kg 体重/日未満)であると考えられた。(参照 40、41、88、94)

(腫瘍の発生機序に関しては [12.(1)~(5)] を参照)

表 40 2年間慢性毒性/発がん性併合試験 (ラット) ②で認められた毒性所見 (非腫瘍性病変)

投与群	雄	雌
3,000 ppm	・尿タンパク増加 ・肝、腎及び甲状腺絶対及び比重量 増加 ・肝退色及び小葉像明瞭化 ・腺胃粘膜腸上皮化生 ・精巣精上皮変性/萎縮	 ・体重増加抑制(投与1週以降) ・尿タンパク増加 ・副腎及び脾絶対及び比重量減少 ・前胃扁平上皮過形成/角化亢進 ・副腎退色 ・腺胃粘膜腸上皮化生 ・小葉中心性肝細胞壊死 ・肝慢性炎症
1,000 ppm 以上	 ・死亡率上昇 ・体重増加抑制(投与1週以降) ・T.Chol 増加 ・甲状腺ろ胞のう胞化及びろ胞上皮過形成 ・鼻粘膜杯細胞過形成 ・前胃角化亢進 ・精巣精上皮成熟停止 	・死亡率上昇・甲状腺ろ胞のう胞化及びろ胞上皮 過形成・膵脂肪症
100 ppm 以上	• 慢性腎症	• 慢性腎症

⁶ ブタクロール及び類似物質アラクロールで認められた胃腫瘍について、一貫性のある診断を実施し、腫瘍がどのような細胞を起源としたものか明らかにするために、病理学専門家によるパネルミーティングが開催された(2009 年 5 月)。ミーティングでは既存の HE 染色、NSE 染色及びクロモグラミン A 染色標本を用い、ブタクロール及びアラクロールにおける長期試験で認められた胃腫瘍に

ついて再評価が実施された。

表 41 胃、甲状腺及び鼻部の腫瘍性病変の発生動物数

		左	隹		雌			
投与群(ppm)	0	100	1,000	3,000	0	100	1,000	3,000
胃:検査動物	78	80	80	79	80	78	80	80
腫瘍発生動物数	0	0	0	2	0	0	0	20**
甲状腺:検査動物数	77	79	78	79	78	77	80	79
腺腫発生動物数	2	7	2	28**	0	1	7**	24**
腺癌発生動物数	0	1	1	2	1	1	4	1
合計	2	8	3	30**	1	2	11**	25**
鼻部:検査動物数	79	75	77	79	80	79	77	75
腺腫発生動物数	0	0	4	13**	0	0	9**	10**
腺癌発生動物数	0	0	0	1	0	0	0	2

注) 発生動物数の値は良性、悪性いずれかの腫瘍の発生の認められた動物の総数。

Fisher の直接確率検定法 **: p<0.01

表 42 再評価した胃組織に認められた前癌病変、初期腫瘍及び腫瘍性病変の 発生頻度

	雄				雌			
投与群(ppm)	0	100	1,000	3,000	0	100	1,000	3,000
胃:検査動物数	78	80	80	79	80	78	80	80
腫瘍性神経内分泌 細胞過形成	0	0	0	1	0	0	0	3
胃カルチノイド	0	0	0	0	0	0	0	4
未分化の胃癌 1)	0	0	0	0	0	0	0	19**
神経鞘腫	0	0	0	1	0	0	0	0

注) Fisher の直接確率検定法 **:p<0.01

表 43 病理パネルミーティングの再評価によるブタクロールのラットを用いた 2年間慢性毒性/発がん性併合試験②における胃腫瘍診断名及び発生頻度

	雄				此隹			
投与群(ppm)	0	100	1,000	3,000	0	100	1,000	3,000
胃:検査動物数	78	80	80	79	80	78	80	80
• 神経内分泌細胞過形成	0	0	0	1	0	0	0	4
腺胃腫瘍発生動物数	0	0	0	1	0	0	0	23*
• 良性神経内分泌細胞腫	0	0	0	0	0	0	0	1
• 悪性神経内分泌細胞腫	0	0	0	1	0	0	0	22*

注)Fisher の直接確率検定法 *: p<0.001

[・]胃腫瘍性病変については、診断名を明確にするためのパネルミーティングによる病理組織学 的検討(再評価)が実施されている[12.(4)]。

^{1):} 未分化のカルチノイドと診断されている。

(4) 2年間慢性毒性/発がん性併合試験(ラット)③

SD ラット(一群雌雄各 80 匹)を用いた混餌投与(原体:0、5、20 及び 100 ppm: 平均検体摂取量は表 44 参照) による 2 年間慢性毒性/発がん性併合試験が実施された。

表 44 2年間慢性毒性/発がん性併合試験 (ラット) ③の平均検体摂取量

投与群		5 ppm	20 ppm	100 ppm
平均検体摂取量	雄	0.2	1.0	4.9
(mg/kg 体重/日)	雌	0.3	1.2	6.1

検体投与による死亡率の上昇は認められなかった。5 ppm 投与群の雄で1例、20 ppm 投与群の雌雄で各1例ずつ、鼻粘膜の腫瘍が認められたが、これら3例の腫瘍は形態学的に異なるものであり、用量相関性も認められなかったこと等から、腫瘍の発生と検体投与との関連性はないと考えられた。その他、各投与群で検体投与の影響は認められなかった。

したがって、本試験における無毒性量は雌雄とも本試験の最高用量 100 ppm (雄: 4.9 mg/kg 体重/日、雌: 6.1 mg/kg 体重/日)であると考えられた。本試験条件下では発がん性は認められなかった。(参照 42、94)

<SD ラットを用いた2年間慢性毒性/発がん性併合試験の無毒性量について>

ラットを用いた 2 年間慢性毒性/発がん性併合試験③ [8.(4)] において、いずれの投与群においても検体投与の影響が認められず、無毒性量は試験の最高用量である 100 ppm(雄: 4.9 mg/kg 体重/日、雌: 6.1 mg/kg 体重/日)であった。一方で、ラットを用いた 2 年間慢性毒性/発がん性併合試験② [8.(3)] において 100 ppm(雄: 4.5 mg/kg 体重/日、雌: 5.7 mg/kg 体重/日)以上投与群の雌雄において慢性腎症が認められ、慢性腎症と検体投与との関連が否定できないことから、試験②及び③の結果を総合的に判断し、ブタクロールの SD ラットを用いた 2 年間慢性毒性/発がん性併合試験における無毒性量は雌雄とも 20 ppm(雄: 1.0 mg/kg 体重/日、雌: 1.2 mg/kg 体重/日)であると考えられた。

(5) 2年間発がん性試験(マウス)

ICR マウス (一群雌雄各 100 匹) を用いた混餌投与 (原体:0、50、500 及び 2,000 ppm: 平均検体摂取量は表 45 参照) による 2 年間発がん性試験が実施された。

表 45 2年間発がん性試験(マウス)の平均検体摂取量

投与群		50 ppm	500 ppm	2,000 ppm
平均検体摂取量	雄	7.13	72.5	304
(mg/kg 体重/日)	雌	8.56	85.6	382

検体投与による死亡率の上昇は認められなかった。

各投与群で認められた毒性所見は表 46 に示されている。

腫瘍性病変に検体投与と関連した発生頻度の増加は認められなかった。

500 ppm 以上投与群の雌雄で白内障の発生増加が認められたが、試験 79 週までの眼科検査においては、白内障の有意な増加は認められなかったため、白内障の発生には、ブタクロール投与のみならず、79 週以降の加齢の影響が関与しているものと考えられた。

本試験において、500 ppm 以上投与群の雌雄で白内障発生頻度の増加等が認められたことから、無毒性量は雌雄とも 50 ppm(雄:7.13 mg/kg 体重/日、雌:8.56 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 43、94)

表 46 2年間発がん性試験(マウス)で認められた毒性所見

投与群	雄	雌		
2,000 ppm	・摂餌量減少(投与 80 週以降)	·体重增加抑制(投与 6 週以降)、摂餌		
	腎絶対重量減少	量減少(投与 94 週以降)		
	・ネフローゼ	・ネフローゼ		
500 ppm	・体重増加抑制(投与 72、92 及び 98	• 腎絶対重量減少		
以上	週) a	• 白内障		
	• 白内障	・肺胞/細気管支上皮過形成及び肺胞		
	・胆嚢粘膜過形成	マクロファージ増加		
50 ppm	毒性所見なし	毒性所見なし		

a: 2,000 ppm 投与群では投与 2 週以降。

9. 生殖発生毒性試験

(1) 2世代繁殖試験(ラット)

SD ラット (一群雌雄各 25 匹) を用いた混餌投与 (原体:0、100、1,000 及び 3,000 ppm: 平均検体摂取量は表 47 参照) による 2 世代繁殖試験が実施された。 P 世代では 2 回交配、出産させた児動物 (F_{1a}, F_{1b}) のうち F_{1b} を F_{1} 世代の親動物とし、2 回交配、出産させた(児動物: F_{2a}, F_{2b})。

表 47 2世代繁殖試験 (ラット) の平均検体摂取量

投与群			100 ppm	1,000 ppm	3,000 ppm
平均検体摂取量 (mg/kg 体重/日)	D 卌代	雄	6.74	67.2	198
	P世代	雌	8.40	84.8	246
	т ш./ь	雄	8.13	84.0	283
	F ₁ 世代	雌	9.58	103	320

P 世代児動物 F_{1b} において、3,000 ppm 投与群で哺育 4 日生存率の低下が認められた。また、1,000 ppm 投与群で哺育 0 日生存率が有意に低下したが、これは 1 腹 12 産児の死亡が原因であった。

各投与群で認められた毒性所見は表 48 に示されている。

本試験において、親動物では 3,000 ppm 投与群の雌及び 1,000 ppm 以上投与群の雄で体重増加抑制が、児動物では 1,000 ppm 以上投与群の雌雄で体重増加抑制が認められたことから、無毒性量は親動物の雄で 100 ppm (P 雄: 6.74 mg/kg 体重/日、 F_1 雄: 8.13 mg/kg 体重/日)、雌で 1,000 ppm (P 雌: 84.8 mg/kg 体重/日、 F_1 雌: 103 mg/kg 体重/日)、児動物では雌雄とも 100 ppm (P 雄: 6.74 mg/kg 体重/日、P 雌: 8.40 mg/kg 体重/日、 F_1 雄: 8.13 mg/kg 体重/日、 F_1 雄: 9.58 mg/kg 体重/日)であると考えられた。繁殖能に対する影響は認められなかった。 (参照 44、94)

表 48 2世代繁殖試験 (ラット) で認められた毒性所見

					-
	投与群	親:P、児:F _{1a} 、F _{1b}			$E: \mathrm{F}_{2\mathrm{a}}, \ \mathrm{F}_{2\mathrm{b}}$
	汉子杆	雄	雌	雄	雌
	3,000 ppm	· 体重增加抑制(投	· 体重增加抑制(投		・体重増加抑制
親		与1週以降)	与1週以降)		
動	1,000 ppm	1,000 ppm 以下	1,000 ppm 以下	・体重増加抑制	1,000 ppm 以下
物	以上	毒性所見なし	毒性所見なし		毒性所見なし
	100 ppm			毒性所見なし	
児	3,000 ppm			・体重増加抑制	• 体重增加抑制
動	1,000 ppm	・体重増加抑制	• 体重增加抑制	1,000 ppm 以下	1,000 ppm 以下
物	以上			毒性所見なし	毒性所見なし
190	100 ppm	毒性所見なし	毒性所見なし		

(2)発生毒性試験(ラット)

SD ラット (一群雌 $21\sim24$ 匹) の妊娠 $6\sim19$ 日に強制経口投与 (原体:0、49、147 及び 490 mg/kg 体重/日、原液)し、発生毒性試験が実施された。

母動物では 490 mg/kg 体重/日投与群に体重減少(妊娠 $6\sim9$ 日)及び増加抑制(妊娠 $9\sim12$ 日以降)、不規則呼吸、眼の分泌物、脱毛及び鼻部の発赤(発現時期不明)が認められた。

胎児に投与の影響は認められなかった。

本試験における無毒性量は、母動物で 147 mg/kg 体重/日、胎児で本試験の最高用量 490 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。 (参照 45、94)

(3)発生毒性試験(ウサギ)

Dutch Belted ウサギ(一群雌 $15\sim16$ 匹)の妊娠 $6\sim28$ 日に強制経口投与(原体:0、49、147 及び 245 mg/kg 体重/日、原液)し、発生毒性試験が実施された。

母動物では、147 mg/kg 体重/日以上投与群で死亡率の上昇、流産の増加、体 重減少/増加抑制(妊娠 6~12 日以降)及び死亡・吸収胚数の増加が認められた。

胎児では、147 mg/kg 体重/日以上投与群で平均胎児体重の減少が認められた。 また、同投与群で第5及び第6胸骨の未骨化の増加が認められたが、これは親動物に対する検体投与の影響によって胎児体重が減少したことが原因と考えられた。

本試験における無毒性量は、母動物及び胎児で 49 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 46、94)

10. 遺伝毒性試験

(1) 分析用標準品

ブタクロール(分析用標準品)の細菌を用いた DNA 修復試験及び復帰突然変異試験、哺乳類培養細胞を用いた *Hgprt* 遺伝子突然変異試験並びにラットを用いた UDS 試験及び *in vivo* 染色体異常試験が実施された。

結果は表 49 に示されている。

復帰突然変異試験において、代謝活性化系存在下で Salmonella typhimurium TA100 株に対し復帰突然変異誘発性が認められたが、ほかの試験結果は全て陰性であった。(参照 $47\sim54$ 、94)

表 49 遺伝毒性試験概要(分析用標準品)

	試験	対象	処理濃度・投与量	結果
in vitro	DNA 修復 試験 (参照 47)	Bacillus subtilis (H17、M45 株)	1~100 μg/ディスク	陰性
	復帰突然 変異試験 (参照 48)	S. typhimurium (TA98、TA1535、 TA1537、TA1538 株) Escherichia coli (WP2 hcr 株)	10~5,000 μg/プレート(+/-S9)	陰性
		S. typhimurium (TA100 株)	① $10\sim5,000 \mu g/プレート(+/-S9)$ (プレート法) ② $10\sim1,000 \mu g/プレート(+S9)$ (プレインキュベーション法)	陽性 1)
	復帰突然 変異試験 (参照 49)	S. typhimurium (TA98、TA100、TA1535, TA1537 株)	32~32,100 μg/プレート(+/-S9)	陰性
	復帰突然 変異試験 (参照 50)	S. typhimurium (TA98 株)	①10.7~10,700 μg /プレート (+/-S9) (プレート法)	陰性
		S. typhimurium (TA100 株)	②10.7~10,700 μg /プレート (+/-S9) (プレインキュベーション法)	陽性 2)
	#gprt 遺伝子突然 変異試験 (参照 52)	チャイニーズハムスター 卵巣由来細胞(CHO)	5~25 μg/mL (·S9) 10~50 μg/mL (+S9、2%、10%)	陰性
in vitro /in vivo	UDS 試験 (参照 53)	Fischer ラット(肝細胞) (一群雄 3 匹)	①50、200、1,000 mg/kg 体重 (単回経口投与、投与 2 及び 12 時間後と殺)	陰性
in vivo	染色体異常 試験 (参照 54)	SD ラット(骨髄細胞) (一群雌雄各 5 匹)	75、250、750 mg/kg 体重 (単回腹腔内投与、投与 6、12 及 び 24 時間後と殺)	陰性

注)+/-S9:代謝活性化系存在下及び非存在下

(2)原体

ブタクロール (原体) の細菌を用いた復帰突然変異試験、チャイニーズハムスター卵巣由来細胞 (CHO) を用いた染色体異常試験並びにマウスを用いた小核試験及び優性致死試験が実施された。

結果は表 50 に示されている。

分析用標準品の試験と同様に細菌を用いる復帰突然変異試験の一部で陽性結果が得られたが、その他の試験では全て陰性であった。(参照 55~70、94、97)

^{1):} 代謝活性化系非存在下では陰性

 $^{^{2)}}$: S-9 mix 濃度 30%の条件下、ガイドラインの上限である 5,000 μ g/プレートを超える 10,700 μ g/プレートのみ陽性。

ブタクロールの原体及び分析標準品のいずれを用いた場合でも復帰突然変異試験のうちで、非 GLP 下で行われた一部の試験において、*S. typhimurium* TA100 株に対し復帰突然変異誘発性が認められたが、原体を用いて GLP 下で行われた復帰突然変異試験では陰性であった。また、*B. subtilis* を用いる DNA 修復試験、チャイニーズハムスター卵巣由来細胞(CHO)を用いる *Hgprt* 遺伝子突然変異試験及びラット肝細胞を用いた *in vivo/in vitro* UDS 試験において陰性であったこと、並びにマウスを用いた小核試験及び優性致死試験において陰性であったことを考慮して、総合的に考察すると、生体にとって問題となる遺伝毒性はないと考えられた。

表 50 遺伝毒性試験概要 (原体)

F				
	試験	対象	処理濃度・投与量	結果
in vitro	復帰突然 変異試験 (参照 55)	S. typhimurium (TA98、TA1535、 TA1537 株)	107~107,000 μg/プレート (+/-S9)	陰性
		S. typhimurium (TA100 株)	107~107,000 μg/プレート (+/-S9)	陽性 1)
	復帰突然 変異試験 (参照 67)	S. typhimurium (TA98、TA100、 TA1535、TA1537 株)	15~1,500 μg/プレート(+/-S9)	陰性
	復帰突然 変異試験	S. typhimurium (TA98、TA100 株)	39.1~1,250 μg/プレート(-S9) 313~5,000 μg/プレート(+S9)	
	(参照 97)	S. typhimurium (TA1535、TA1537 株)	39.1~1,250 μg/プレート (+/-S9)	陰性
		E. coli (WP2 uvrA 株)	313~5,000 μg/プレート (+/-S9)	
	染色体異常 試験 (参照 68)	チャイニーズハムスター 卵巣由来細胞(CHO)	①1.88~29.9 μg/mL(-S9) 3.75~60 μg/mL(+S9) ②1.88~30.0 μg/mL(-S9) 7.5~60 μg/mL(+S9) ③0.94~15 μg/mL(-S9) 15.0~79.9 μg/mL(+S9)	陰性
in vivo	小核試験 (参照 69)	Swiss Webster マウス (骨髄細胞) (一群雌雄各 8 匹)	250、500、1,000 mg/kg 体重 (2 回腹腔内投与、投与 48 及び 72 時間後と殺)	陰性
	優性致死 試験 (参照 70)	ICR マウス (一群雄 15 匹、雌 30 匹)	100、1,000、5,000 ppm 雄:21.9、219、1,100 mg/kg 体重/日 雌:24、240、1,200 mg/kg 体重/日 (7 週間混餌投与) ²⁾	陰性

注) +/-S9: 代謝活性化系存在下及び非存在下

^{1):} 代謝活性化系非存在下では陰性。

²⁾: 飼料摂取量は測定していないが、同系統で実施された 90 日亜急性毒性試験 [7.(3)] のはじめの 7 週間飼料摂取量で換算した。

11. 経皮投与、吸入ばく露等試験

(1) 急性毒性試験(経皮、腹腔内及び皮下投与並びに吸入ばく露)

ブタクロール (原体) を用いた急性毒性試験 (経皮、腹腔内及び皮下投与並びに吸入ばく露) が実施された。

各試験の結果は表 51 に示されている。 (参照 26~30、94)

表 51 急性毒性試験結果概要(経皮、腹腔内及び皮下投与並びに吸入ばく露、原体)

投与	動物種	LD ₅₀ (mg/		
経路	性別・匹数	雄	雌	観察された症状
経皮	NZW ウサギ 雌雄各 2 匹 (参照 28)	13,000	13,000	体重増加抑制、活動の低下、鼻汁、塗布部位に紅斑、浮腫、軽度の痂皮形成、剖検で肝、腎、肺及び脾に斑紋、変色、胃及び腸にガス膨満、液体膨満 死亡例なし
腹腔内	Fischer ラット 雌雄各 10 匹 (参照 26)	1,020	975	不活発化、立毛、流涙、呼吸抑制、紅涙 雄:932 mg/kg 体重以上で死亡例 雌:818 mg/kg 体重以上で死亡例
腹腔的	ICR マウス 雌雄各 10 匹 (参照 27)	940	1,100	立毛、尾の退色、軟便、皮膚温の低下 雄:1,100 mg/kg 体重以上で死亡例 雌:846 mg/kg 体重以上で死亡例
皮下	Fischer ラット 雌雄各 10 匹 (参照 26)	7,650	9,480	不活発化、立毛、流涙、呼吸抑制、紅涙 雄:6,050 mg/kg 体重以上で死亡例 雌:7,860 mg/kg 体重以上で死亡例
	ICR マウス 雌雄各 10 匹 (参照 27)	13,900	15,800	立毛、尾の退色、軟便、皮膚温の低下、尾の 壊死、投与部位の皮膚の剥離、脾臓の腫脹 雌雄:12,500mg/kg 体重以上で死亡例
	SD ラット ^a	LC ₅₀ (1	ng/L)	分泌系、呼吸器系及び皮膚の刺激、神経筋障
吸入	雌雄各 5 匹 (参照 29)	>3.34	>3.34	害、肺の変色 死亡例なし
	SD ラット ^b 雌雄各 5 匹 (参照 30)	>5.3	>5.3	検体の鼻への付着、眼からの赤色分泌物、被 毛の尿及び糞による汚染 死亡例なし

a:4時間全身ばく露(エアゾル)

(2)眼・皮膚に対する刺激性及び皮膚感作性試験

NZW ウサギを用いた眼刺激性試験及び皮膚刺激性試験が実施された。その結

b:4時間鼻部ばく露(エアゾル)

果、ブタクロールについて、眼及び皮膚に対する中等度の刺激性が認められた。 Hartley モルモットを用いた皮膚感作性試験(Buehler 法)が実施された。その結果、皮膚感作性が認められた。(参照 $31\sim33$ 、94)

(3) 21 日間亜急性経皮毒性試験(ウサギ)

NZW ウサギ (一群雌雄各 10 匹) を用いた経皮投与 (原体:0、100、500 及び 2,500 mg/kg 体重/日) による 21 日間亜急性経皮毒性試験が実施された。

剃毛したウサギ背部皮膚に検体を 21 日間 (1 日 6 時間、1 週間に 5 日、3 週間) 塗布し続けた。

投与に関連した死亡は認められなかった。100 mg/kg 体重/日以上投与群で皮膚の紅斑、浮腫、落屑、アトニー、角質化及び亀裂が認められた。試験終了時の肉眼的病理検査においては500 mg/kg 体重/日以上投与群で投与部皮膚の肥厚、紅斑、発赤、痂皮形成及び剥脱が認められたが、病理組織学的検査では全投与群で慢性皮膚炎が認められた。なお、検体投与による全身性の影響は認められなかった。

本試験において、一般毒性の無毒性量は雌雄とも本試験の最高用量 2,500 mg/kg 体重/日であると考えられた。 (参照 37、94)

12. その他の試験

(1) 二段階発がん試験(ラット)

SD ラットを用いた 2 年間慢性毒性/発がん性併合試験②[8.(3)]において、胃に腫瘍発生増加が認められたため、ブタクロールのイニシエーション作用及びプロモーション作用の有無を検討するために、SD ラット(一群雌雄各 20 匹)を用いた、二段階発がん試験が実施された。

N-メチル-N-ニトロ-N-ニトロソグアニジン (MNNG: 150 mg/kg 体重)、DMSO (5 mL/kg 体重) 又はブタクロール (原体: 90 及び 270 mg/kg 体重) の単回強制経口投与後、ブタクロール (原体: 0、1,000 及び 3,000 ppm) 又はカテコール (8,000 ppm) を 1 年間混餌投与された。

混餌投与した検体の平均検体摂取量は表52に示されている。

表 52 二段階発がん試験 (ラット) の平均検体摂取量

単回経口投与		混餌	混餌投与		平均検体摂取量 (mg/kg 体重/日)	
検体	投与量 (mg/kg 体重)	検体	投与量 (ppm)	試験群	雄 雄	雌
		基礎飼料	_	V1	_	_
MNNG	150	ブタクロール	1,000	T1	45.9	61.5
WINNG		ブタクロール	3,000	T2	141	194
		カテコール	8,000	P	415	575
	90	カテコール	8,000	Т3	405	585
ブタクロール	270	基礎飼料	_	V2	_	_
		カテコール	8,000	T4	401	562
DMSO	_	ブタクロール	3,000	T5	139	192
	5	カテコール	8,000	Т6	410	545

-:検体の摂取なし

試験期間中途中死亡した動物のほとんどは、MNNG 単回投与後にブタクロール又はカテコールを混餌投与したものであった。ブタクロールを混餌投与した群では、致死率や疾病率に関して用量相関性は認められなかった。

カテコールを混餌投与した群では体重増加抑制及び摂餌量減少が認められ、また DMSO 単回投与後ブタクロールを 3,000 ppm で混餌投与した群では雌雄とも体重増加抑制が認められた。雌では MNNG 単回投与後ブタクロール 3,000 ppm を混餌投与した群でも体重増加抑制が認められた。

各群で認められた腺胃における増殖性病変は、表53に示されている。

本試験系では MNNG イニシエーション後ブタクロール投与により用量依存性に胃の腫瘍が増加した。ブタクロール又は DMSO 単回投与後、カテコールを投与した群においても腺腫及び腺癌が発生したが、雄ではカテコールのみの投与群に高率に胃腫瘍が発生したため、本試験系を用いてブタクロールのイニシエーション作用を評価することはできなかった。ブタクロールのみ投与群において腫瘍の発生は観察されなかった。本試験の結果から、ブタクロールはラットの胃に対してイニシエーション作用はなく、プロモーション作用を示すことが明らかになった。しかし、ブタクロールのプロモーション作用は、高投与量(3,000 ppm、雄:141 mg/kg 体重/日、雌:194 mg/kg 体重/日)に限られていた。また、この結果は、ブタクロールはラットの胃粘膜上皮にも腫瘍発生促進作用がある可能性を示していた。このブタクロールによるプロモーション作用には閾値が存在した。(参照 72、94)

表 53 各群で認められた腺胃における増殖性病変

投-	投与量		性		異型細				担腫瘍
(mg/kg 体重)	(ppm)	試験 群	別	過形成	胞巣/ 過形成	腺腫	腺癌	肉腫	動物数
	基礎飼料	V1	雄	0	2	2	1	0	3
	本 键即作	V I	雌	1	1	0	1	0	1
	ブタクロール	T1	雄	4	5	1	1	0	2
MNNG	(1,000)	11	雌	0	1	0	0	0	0
(150)	ブタクロール	T2	雄	2	5	5	4	1	9
	(3,000)	14	雌	0	6*	7**	5*	1	13**
	カテコール	P ;	雄	6*	4	6	12**	1	18**
	(8,000)	1	雌	6*	2	10**	9**	0	18**
DMSO	ブタクロール	Т5	雄	0	0	0	0	0	0
(5)	(3,000)	10	雌	0	0	0	0	0	0
DMSO	カテコール	Т6	雄	11	0	14	5	0	19
(5)	(8,000)	10	雌	12	0	4	1	0	5
ブタクロール	基礎飼料	V2	雄	0	0	0	0	0	0
(270)	玄 诞 的 个	V Z	雌	0	0	0	0	0	0
ブタクロール	カテコール	Т3	雄	8	0	14	6	0	20
(90)	(8,000)	10	雌	8	1	7	1	0	8
ブタクロール	カテコール	T4	雄	6	2	11	4	0	15
(270)	(8,000)	14	雌	7	1	10	1	0	11

注) #: 腺胃に腫瘍が認められた動物数

Fisher 直接確率検定法(両測): *: p<0.05、**: p<0.01

- ・MNNGをイニシエーターとした群(T1、T2及びP)は、V1群と比較
- ・ブタクロールをイニシエーターとした群 (T3及びT4) は、T6と比較

(2) 腫瘍発生機構に関する試験 (ラット)

SD ラットを用いた 2 年間慢性毒性/発がん性併合試験② [8.(3)] において、 胃、甲状腺及び鼻部で腫瘍の発生増加が認められたため、腫瘍発生機構に関する 試験が実施された。

SD ラット(一群雌 $190\sim205$ 匹、分析用標準品を用いた群のみ雌 60 匹)に、ブタクロールを 22 か月間混餌投与(原体:0、100、1,000 及び 3,000 ppm、分析用標準品:3,000 ppm:平均検体摂取量は表 54 参照)した。

表 54 腫瘍発生機構に関する試験 (ラット) の平均検体摂取量

検体			原体		標準品
投与群		100 ppm	1,000 ppm	3,000 ppm	3,000 ppm
平均検体摂取量	1	6.64	66.1	213	208
(mg/kg 体重/日)	2	8.49	76.7	236	

①:本試験 ②:可逆性試験(20か月原体を混餌投与後、基礎飼料で1か月飼育)

原体及び標準品 3,000 ppm 投与群で胃の腫瘍による腹部膨満、体重増加抑制、胃の結節及び腫瘤の発現が認められた。また、以下の①~⑦の試験が実施された。

① 胃組織の細胞増殖活性及び粘膜の厚さ

原体(0及び3,000 ppm)を14、30、60、120、180日及び20か月間混餌投与した群の胃底腺領域、幽門腺領域における増殖性細胞核抗原(PCNA)又は5-ブロモ-2'-デオキシウリジン(BrdU)免疫染色の標識率を指標とした細胞増殖活性の測定が実施された。また、同群ラットの胃底腺粘膜の厚さを測定した。なお、胃底腺粘膜については、20か月間混餌投与した後約30日間基礎飼料で飼育した群についても検査された。

胃底腺領域では細胞増殖活性の増加が試験開始後 60 日以降で連続して認められたが、幽門腺領域には検体投与に関連した細胞増殖活性の増加は認められなかった。胃粘膜の厚さに関しては、試験開始後 14 日後を除く全ての時期に有意な減少が認められた。

② 血清ガストリン濃度

原体 (0, 100, 1,000 及び 3,000 ppm) を 180 日、18 か月及び 20 か月間混餌 投与した群、原体 (0 及び 3000 ppm) を 14、60 及び 120 日間混餌投与した群 又は 20 か月混餌投与後、1 か月間基礎飼料で飼育した群並びに標準品 (3,000 ppm) を 18 か月混餌投与した群の血清ガストリン濃度が測定された。

原体及び標準品 3,000 ppm 投与群では対照群より血清ガストリン濃度の増加が認められ、また、投与期間中経時的に増加傾向が認められた。100 及び 1,000 ppm 投与群では有意な増加は認められなかった。

③ 胃分泌液 pH

試験開始 21.5 か月後に原体投与群 (0、100、1,000 及び 3,000 ppm) の胃分 泌液 pH 及び酸排出量が測定された。

3,000 ppm 投与群では pH が有意に上昇したが、ほかの投与群では変化は認められなかった。対照群並びに 100 及び 1,000 ppm 投与群における pH の平均値は約 2.7、3,000 ppm 投与群における pH の平均値は約 5.7 であった。

酸排出量は 3,000 ppm 投与群で有意な減少が認められた。 1,000 ppm 投与群においても有意差はないものの対照群と比べ減少傾向が認められた。

④ ガストリン受容体結合

原体(3,000 ppm)を 20 か月混餌投与後にと殺した動物より得た腫瘍サンプル4 例において、ガストリン受容体結合試験が実施された。

4 例中 2 例において、対照群の腺胃部の粘膜に比べてガストリン結合部位の増加が認められた。

⑤ グルタチオン濃度

原体(0、100、1,000 及び 3,000 ppm)を 14、30、60、120 及び 180 日間混餌投与した群の腺胃における酸化型(GSSG)及び還元型(GSH)グルタチオン濃度が測定された。

3,000 ppm で $14\sim60$ 日投与した群で GSH 濃度の上昇が認められたが、120 及び 180 日投与群では上昇は認められなくなった。GSSG 濃度は全群で非常に低く、検出限界に近かった。

また、原体(0, 100, 1,000 及び3,000 ppm) を14 日間混餌投与した個体の肝臓における GSH 濃度を測定したところ、検体投与の影響は認められなかった。

⑥ 鼻部組織の細胞増殖活性

原体 (0 及び 3,000 ppm) を 60 日間及び 20 か月間投与した群並びに原体 (0、100、1,000 及び 3,000 ppm) を 180 日間投与した群について、鼻腔の嗅上皮粘膜及び気道上皮粘膜における PCNA (60 日及び 180 日後サンプル) 又は BrdU (20 か月後サンプル) 標識率を指標として細胞増殖活性が測定された。

嗅上皮の細胞増殖活性は、試験開始 60 日後及び 20 か月後の 3,000 ppm 投与群で有意に増加した。また、試験開始 180 日後には全投与群で増加する傾向が認められたが、有意差が認められたのは 1,000 ppm 投与群のみであった。気道上皮の細胞増殖活性は試験開始 20 か月後の 3,000 ppm 投与群で有意に増加した。

⑦ 甲状腺重量及び甲状腺ホルモン濃度

原体 (0, 100, 1,000 及び 3,000 ppm) を 14, 30, 60, 120, 180 日及び 20 か月間混餌投与した群並びに原体 (0 及び 3,000 ppm) を 30 日又は 20 か月間混餌投与後、1 か月基礎飼料で飼育した群における甲状腺絶対重量並びに TSH、 T_3 及び T_4 濃度が測定された。また、原体 (3,000 ppm) を 20 か月間混餌投与した群及び 20 か月混餌投与後、1 か月間基礎飼料で飼育した群における肝 UDPGT 酵素活性が T_4 を基質として測定された。

甲状腺絶対重量は投与群で投与 120 日まで増加傾向を示したが、有意な増加は 3,000 ppm 投与群の投与 120 日、1,000 ppm 投与群の投与 20 か月でのみ観察された。 TSH 濃度は 3,000 ppm 投与群で投与期間を通じて有意に上昇し、休薬により回復した。 T_4 は投与 180 日でのみ全投与群で有意に低下していたが、ほかの時期では一定の傾向や有意な変化はなかった。 T_3 は 1,000 ppm 以上投与群の投与 30 日でのみ有意な減少が認められたが、ほかの時期では対照群と有意差はなかった。

3,000 ppm 投与群の投与 20 か月において、 FUDPGT 酵素活性は増加したが、休薬により回復した。(参照 73、86、87、94)

(3) 腺胃腫瘍性病変の解析①

SD ラットにブタクロールを 22 か月間混餌投与(原体:0、100、1,000 及び 3,000 ppm)した試験[12.(2)]において、腺胃の腫瘍性病変の解析のために、パネルミーティングによる病理組織学的検査が実施された。検査は 0、1,000 及び 3,000 ppm 投与群で実施された。

結果は表55に示されている。

腫瘍は3,000 ppm 投与群で認められた。3,000 ppm で認められた腫瘍は、早期の高分化の神経内分泌病変から、未分化の進行性腫瘍までを含む胃カルチノイドであった。 (参照86、94)

投与群		0 ppm	1,000 ppm	3,000 ppm
検査動物数		23	10	36
腫瘍性病変	腫瘍性病変 進行性腫瘍		0	11
	初期段階腫瘍	0	0	5
非腫瘍性病変	腺胃底腺部萎縮	0	3	20
	腺胃底腺部粘膜欠損	0	1	12
	慢性炎症	0	0	2
	神経内分泌細胞腫	0	0	2

表 55 胃における病理組織学的検査で認められた病変

(4) 腺胃腫瘍性病変の解析②

ラットを用いた 2 年間慢性毒性/発がん性併合試験② [8.(3)]、二段階発がん試験 [12.(1)] 及び腫瘍発生機構に関する試験 [12.(2)] において認められた胃増殖性病変について、診断名を明確にするため、パネルミーティングによる病理組織学的検討(再評価)が実施された。

2年間慢性毒性/発がん性併合試験② [8.(3)] では、3,000 ppm 投与群で腺胃腫瘍の認められた雄1例及び雌20例の病理組織学的検討の結果、腫瘍の大半は悪性神経内分泌細胞腫と腺癌からなる悪性混合腫瘍であった。また、同群で腺胃に初期病変の認められた雄1例及び雌6例に関しては、病理組織学的検討の結果、神経内分泌細胞腫又は神経内分泌細胞過形成と診断された。

二段階発がん試験 [12.(1)] では、ブタクロールのみを 3,000 ppm で 1 年間 混餌投与した対照群で検査が実施されたが、胃の増殖性変化はいずれの動物においても観察されなかった。雌雄とも胃底腺及び幽門腺粘膜の萎縮が認められ、特に雌動物で高頻度に観察された。

腫瘍発生機構に関する試験 [12.(2)] では、ブタクロール原体の 3,000 ppm 投与群 24 例で検査が実施されたが、11 例に悪性神経内分泌細胞腫及び悪性混合腫瘍(悪性神経内分泌細胞腫と腺癌よりなる)が認められた。また、神経内分泌細胞過形成及び神経内分泌細胞腫が 5 例、胃粘膜萎縮が 22 例認められた。

ブタクロールは、SD ラットの雌に、3,000 ppm で長期間混餌投与することにより、腺胃に神経内分泌細胞の過形成、神経内分泌細胞腫及び悪性混合腫を誘発させた。3,000 ppm で 1 年間混餌投与した群(二段階発がん試験)では増殖性胃病変を全く認めなかったことより、腫瘍発現には長期のばく露を必要とすることが示唆された。(参照 87、94)

(5) 雌ラットにおける胃壁細胞の定量

SD ラットにブタクロールを 22 か月間混餌投与(原体:0、100、1,000 及び 3,000 ppm)した試験 [12.(2)] 及び Long-Evans ラットにアラクロールでを 12 か月間混餌投与(原体:126 mg/kg 体重/日)した試験の胃組織標本(一群雌 10 匹)を用いて、胃壁細胞の定量試験が実施された。

ラットの前胃及び腺胃の境界縁から 5 mm の位置から始まる 1 mm の胃粘膜について壁細胞の数を計数した。ブタクロール 3,000 ppm (213 mg/kg 体重/日) 投与群及びアラクロール投与群において、対照群と比較して有意な壁細胞の減少が認められた。また、ブタクロール 1,000 ppm (66 mg/kg 体重/日) 投与群でも壁細胞の軽度な減少が認められたが、対照群と比べ有意な差ではなかった。ブタクロール 100 ppm 投与群では対照群との差は認められなかった。(参照 74、94)

(6) ラットの胃及び鼻部組織における細胞増殖活性に対する影響

SD ラット(一群雌 30 匹、対照群のみ 20 匹)にブタクロールを混餌投与(原体:0及び3,000 ppm)し、BrdU 免疫染色の標識率を指標とした、胃及び鼻部組織における細胞増殖活性に対する影響を検討する試験が実施された。検体投与期間は61 又は121 日間とし、また、61 日間投与後 60 日間基礎飼料を給餌する群(回復群)を設けた。

胃においては、61 及び 121 日間投与群で胃底腺粘膜基底部の BrdU 標識率増加及び胃底腺粘膜の厚さの減少が認められた。61 日間投与群では、胃底腺粘膜頚部でも標識率が増加した。回復群では、いずれの領域も標識率の増加は認められなかったが、胃底腺粘膜の厚さの減少は認められた。

鼻部組織においては、嗅上皮において 121 日間投与群で BrdU 標識率の有意な増加が認められた。しかし、回復群では嗅上皮に検体投与の影響は認められず、また、呼吸上皮にはいずれの群も対照群と標識率に差は認められなかった。(参照 75、94)

(7) ラット胃粘膜の細胞増殖活性に対する影響

Fischer ラット(一群雌雄各 6 匹)にブタクロールを 90 日間混餌投与(原体:

⁷ 酸アミド系除草剤アラクロール [2-クロロ-2,'6'-ジエチル-N-(メトキシメチル)アセトアニリド] は、ブタクロールの構造類縁体であり、ラットを用いた慢性毒性/発がん性併合試験において、胃、甲状腺及び鼻部の腫瘍の発生増加が認められた。

0、1,000 及び 3,000 ppm) し、PCNA 免疫染色の標識率を指標とした、胃粘膜における細胞増殖活性に対する影響を検討する試験が実施された。

3,000 ppm 投与群の雌雄において、胃底腺底部において PCNA 標識率が有意 に増加した。胃底腺頚部及び幽門腺では雌雄とも有意な変化は認められず、また 粘膜の厚さについても検体投与の影響は認められなかった。

本試験において、ブタクロールは 3,000 ppm 投与群の雌雄で胃底腺底部の細胞増殖活性を促進することが示唆された。細胞増殖活性の無作用量は雌雄とも 1,000 ppm と考えられた。(参照 76、94)

(8) マウス胃粘膜の細胞増殖活性に対する影響

ICRマウス(一群雌40匹)にブタクロールを混餌投与(原体:0及び2,000 ppm) し、PCNA標識率を指標とした、胃粘膜における細胞増殖活性に対する影響を検討する試験が実施された。検体投与期間は14又は60日とした。平均検体摂取量は表56に示されている。

表 56 マウス胃粘膜の細胞増殖に対する影響の検討試験の平均検体摂取量

投与期間	14 日	60 日
平均検体摂取量 (mg/kg 体重/日)	500	446

試験期間を通じて、死亡例はなかった。投与群で体重増加抑制及び摂餌量増加 が認められた。

14 及び 60 日投与群で胃底腺頚部において PCNA 標識率が増加した。また、 14 日投与群では胃底腺基底部において標識率の減少が、60 日投与群では幽門腺 で標識率増加が認められた。胃底腺粘膜の厚さにいずれの群も検体投与の影響は 認められなかった。(参照 77、94)

(9) アカゲザル胃粘膜の細胞増殖活性に対する影響

アカゲザル (一群雌 5 匹) にブタクロールを 30 日間強制経口投与 (原体:0、0.1 及び 100 mg/kg 体重/日) し、PCNA 標識率を指標とした、胃粘膜における細胞増殖活性に対する影響を検討する試験が実施された。

試験期間を通じて、死亡例はなかった。一般症状、体重変化、摂餌量、血清生化学、血液学的検査及び病理学的検査において検体投与の影響は認められなかった。

PCNA 標識率及び胃粘膜の厚さに関して、検体投与の影響は認められなかった。 (参照 78、94)

(10) ラット腺胃及び肝におけるグルタチオンに対する影響

SD ラット(一群雄 5 匹、雌 20 匹)にブタクロールを単回強制経口投与(原体:0、260 mg/kg 体重/日)し、腺胃及び肝における GSSG 及び GSH 濃度に対する影響を検討する試験が実施された。雄ラットでは投与 24 時間後に腺胃におけるグルタチオン濃度を、雌ラットでは投与 24 時間後までの肝及び腺胃のグルタチオン濃度を経時的に測定した。

雌ラットの肝 GSH は投与後 2~8 時間で対照群より有意に減少し、投与 4 時間後には最小値として対照群に対し 59%となった。その後増加に転じ、投与 24 時間後には対照群と同等であった。肝 GSSG は投与 2 時間後には対照群に比べ減少していたが、その他の時期では検体投与の影響は認められなかった。GSSGはごく少量で、検出限界に近い値であった。

腺胃 GSH 濃度に関しては、雌では投与 24 時間後に対照群に比べ有意な増加が認められた。雄には検体投与の影響は認められなかった。GSSG 濃度は雌雄とも非常に低く、正確な定量ができなかった。(参照 79、94)

(11)腫瘍の総合考察

ラットで認められた腺胃、鼻腔及び甲状腺腫瘍について、以下のように考察した。

① 腺胃腫瘍

各種試験の結果、本腫瘍の発生メカニズムとして、以下の経路が推察された。

- a. 胃底腺粘膜の萎縮(腺胃のグルタチオン減少が関与している可能性あり)
- b. 粘膜萎縮に伴う壁細胞の著しい減少による低塩酸症と、その結果引き起こ される胃液 pH の上昇
- c. pH 上昇による血清中のガストリン濃度の上昇、ガストリンの栄養効果によるエンテロクロマフィン細胞の長期的刺激で引き起こされる細胞活性の上昇増殖

神経内分泌細胞腫の発生メカニズムについては、食品安全委員会が作成した本剤の農薬評価書(参照 100)を含む公表された資料を基に、発がん性メカニズムのヒトへの外挿性に関する IPCS フレームワークにより解析した結果が報告されている(参照 99)。当該報告では、本剤が壁細胞数減少を誘導する分子レベルでのキーイベントは決定されていないが、各メカニズム試験の結果から、上記a.~c.のメカニズム経路を裏付ける十分な証拠が得られており、キーイベントとされている高ガストリン血症及びエンテロクロマフィン細胞過形成は、ヒトへの外挿性は低いとされている。

粘膜萎縮については再評価として実施された腫瘍発生機構に関する試験 [12.(2)] においてのみ観察されているものの、高ガストリン血症及びエンテ

ロクロマフィン細胞過形成はヒトへの外挿性は低いことから、本剤で認められた神経内分泌細胞腫はヒトへの外挿性は低いと考えられた。一方、MNNGを用いた二段階発がん性試験 [12.(1)] において高投与量でプロモーション作用による胃粘膜上皮系の腫瘍の増加が認められたが、イニシエーション作用による腫瘍は認められなかった。

いずれにしても、ブタクロールに生体にとって問題となる遺伝毒性はないことから、腫瘍の発生メカニズムは遺伝毒性によるものではなく、胃腫瘍の発生は139 mg/kg 体重/日という最大耐量を超える投与により引き起こされ、それ以下の投与では観察されていないことから、明らかな閾値が存在すると結論した。(参照85)

② 鼻部腫瘍

ラットに誘発された鼻部腫瘍は、鼻部嗅上皮細胞において特異的に代謝・生成される反応性の高いジアルキルベンゾキノンイミン(DABQI)代謝物が鼻部タンパク質に結合し、酸化ストレスを誘発して鼻部嗅上皮細胞を傷害し、それに対する増殖反応を繰り返すことにより鼻部に腫瘍を誘発するものと考えられた。ただし、細胞増殖活性には閾値が認められた。

DABQI 代謝物の生成は、グルタチオン抱合後に生成した 2 級メチルスルフィドが 2 級メチルスルホキシドに代謝され、パラ位が水酸化されることにより生成されるものと推察されるが、ラットではマウス及びサルと比較して、DABQI 代謝物に至る S メチル化前駆体がより高い割合で生成されること、これら代謝物はラットの鼻部に特異的に局在化するが、マウス及びサルでは認められないこと、鼻部組織中の S メチル化前駆体から DABQI 代謝物生成に関わる代謝酵素活性はマウス、サル及びヒトに比べラットで高いことが明らかとなった。

また、ブタクロールは、ラットにおいて赤血球への結合性が著しく高いことから、マウス、サル及びヒトに比べて鼻部への分布が高い可能性も考えられた。

したがって、DABQI 代謝物生成の代謝経路には種差があり、ヒトの鼻部組織においては DABQI 代謝物生成の可能性が低いと示唆された。(参照 85、89)

③ 甲状腺腫瘍

ブタクロール投与による甲状腺腫瘍の発生機序として、本剤の投与により肝臓の薬物代謝酵素である UDPGT 酵素活性が増加した結果、甲状腺ホルモンが代謝促進され、そのフィードバック機構によって TSH が上昇し、甲状腺ろ胞上皮細胞の過形成又は肥大を誘発したと考えられる。更に、TSH の持続刺激によりろ胞上皮細胞の細胞増殖を促し、甲状腺ろ胞上皮由来の腫瘍が増加したと考えられた。げっ歯類はこの機序による甲状腺腫瘍の促進に感受性の高い種であることが知られている。 (参照 85、89)

以上から、ブタクロール投与によって認められた腫瘍は、いずれも閾値の存在するメカニズムによるものと結論された。また、いずれの腫瘍においても、その発生メカニズムからヒトへの外挿性又はヒトでの感受性は低いと考えられた。

(12)公表文献における研究結果

ブタクロールについて、データベース [Web of Science (Core Collection)及び J-STAGE] を用いて、それぞれ 2006 年 4 月 1 日~2021 年 3 月 31 日、2006 年 1 月 1 日~2021 年 12 月 31 日を検索対象期間とした公表文献検索が実施された結果、ヒトに対する毒性の分野(動物を用いた研究、疫学研究等)に該当するとして収集された公表文献 15 報(データベース間での重複含む。)のうち 4 報が選択され、リスク管理機関から提出された8。(参照 98、101)

評価目的との適合性等の観点から検討した⁹結果、食品健康影響評価に公表文献1報 [Ⅱ.12.(11)] を使用した。

_

^{8「}公表文献の収集、選択等のためのガイドライン (令和3年9月22日 農林水産省 農業資材審議 会農薬分科会決定)」に基づく。

^{9 「}残留農薬の食品健康影響評価における公表文献の取扱いについて (令和3年3月18日 農薬第一 専門調査会決定)」に基づく検討。

Ⅲ. 安全性に係る試験の概要(代謝物)

1. 遺伝毒性試験(代謝物[19]及び[20])

主として動物及び植物由来の代謝物[19]及び[20]の細菌を用いた復帰突然変異試験が実施された。

結果は表 58 に示されており、全て陰性であった。 (参照 71、94)

表 58 遺伝毒性試験概要 (代謝物)

被験物質	試験	対象	処理濃度・投与量	結果
代謝物 [19]	復帰突然変異 試験	S. typhimurium (TA98、TA100 株)	10~10,000 μg/プレート (+/-S9)	陰性
代謝物 [20]	復帰突然変異 試験	S. typhimurium (TA98、TA100 株)	10~10,000 μg/プレート(+/-S9)	陰性

注) +/-S9: 代謝活性化系存在下及び非存在下

IV. 食品健康影響評価

参照に挙げた資料を用いて、農薬「ブタクロール」の食品健康影響評価を実施した。第2版の改訂に当たっては、農薬取締法に基づく再評価に係る評価要請がなされており、農林水産省から、作物残留試験(水稲)、急性毒性試験(経口投与、ラット)及び復帰突然変異試験の成績、公表文献報告書等が新たに提出された。

評価に用いた試験成績において、過去のテストガイドラインに基づき実施されている試験も確認されたが、ブタクロールの代謝・毒性プロファイルを適切に把握できることから、評価は可能と判断した。

水稲を用いた植物代謝試験の結果、ブタクロールの水稲における残留性は低く、可食部(玄米)への移行性は低いと考えられた。植物体内でブタクロールは広範に代謝され、未変化のブタクロールは認められず、多数の代謝物が存在した。10%TRRを超える代謝物として、[20]及び[25]が認められた。

ブタクロールを分析対象化合物とした水稲における作物残留試験の結果、ブタクロールの最大残留値は、稲わらで認められた 0.10~mg/kg であり、可食部(玄米)における残留値はいずれも定量限界未満であった。また、魚介類における最大推定残留値は 0.122~mg/kg であった。

ラットを用いた動物体内動態試験の結果、経口投与されたブタクロールの吸収率は単回経口投与時には低用量群で29.2%~90.7%、高用量群で27.2%~55.9%、反復経口投与時には37.5%~45.9%と算出された。ブタクロールは尿中より糞中への排泄が多く、また主に胆汁中に排泄されることが示された。体内では赤血球への結合性が高く、鼻部への局在化も認められた。

サルを用いた動物体内動態試験の結果、主に尿中に排泄された。ラットで認められたブタクロールと血液へモグロビンとの高い結合性は、サル、マウス及びヒトの血液では認められず、ラットの種特異的な性質と考えられた。いずれの動物種でもブタクロールは広範に代謝され、未同定のものも含め多くの種類の代謝物が存在した。

各種毒性試験結果から、ブタクロール投与による影響は、主に肝臓(肝細胞肥大等)、腎臓(重量変化、慢性腎症等)、鼻腔(粘膜杯細胞過形成)、腺胃(粘膜萎縮)、甲状腺(過形成)及び血液(貧血)に認められた。繁殖能に対する影響、催奇形性及び生体にとって問題となる遺伝毒性は認められなかった。

ラットを用いた慢性毒性/発がん性併合試験②において、3,000 ppm 投与群の雌で胃における腫瘍並びに同投与群の雄及び 1,000 ppm 以上投与群の雌で甲状腺及び鼻部における腫瘍の発生頻度が増加した。これらの腫瘍の発生メカニズムに関する試験を総合的に評価した結果及びブタクロールに生体にとって問題となる遺伝毒性はないことから、これらの腫瘍の発生メカニズムは遺伝毒性によるものではなく、評価に当たり閾値を設定することは可能であると考えられた。また、いずれの腫瘍においても、その発生メカニズムからヒトへの外挿性又はヒトでの感受性は低いと考えられた。

植物代謝試験の結果から、10%TRR を超える代謝物として、[20]及び[25]が認め られた。代謝物[20]はラットで認められ、復帰突然変異試験の結果は陰性であった。 代謝物[25]はラットで認められなかったが、極性が高いと考えられた。以上のこと から、農産物及び魚介類中のばく露評価対象物質をブタクロール(親化合物のみ) と設定した。

各試験における無毒性量及び最小毒性量は表 59 に、単回経口投与等により生ず る可能性のある毒性影響等は表 60 に示されている。

ラットを用いた 2 年間慢性毒性/発がん性併合試験③において、最高用量である 100 ppm(雄:4.9 mg/kg 体重/日、雌:6.1 mg/kg 体重/日)投与群の雌雄で検体投 与の影響が認められなかったが、ラットを用いた 2 年間慢性毒性/発がん性併合試 験②において最小毒性量である 100 ppm (雄: 4.5 mg/kg 体重/日、雌: 5.7 mg/kg 体重/日) 投与群の雌雄で慢性腎症が認められ、検体投与との関連が否定できないこ とから、試験②及び③の結果を総合的に判断し、SD ラットにおける 2 年間慢性毒 性/発がん性併合試験の無毒性量を 20 ppm (雄:1.0 mg/kg 体重/日、雌:1.2 mg/kg 体重/日)とした。

食品安全委員会は、各試験で得られた無毒性量のうち最小値がラットを用いた 2 年間慢性毒性/発がん性併合試験②及び③の総合評価における無毒性量 1.0 mg/kg 体重/日であったことから、これを根拠として安全係数 100 で除した 0.01 mg/kg 体 重/日を許容一日摂取量(ADI)と設定した。

また、ブタクロールの単回経口投与等により生ずる可能性のある毒性影響に対す る無毒性量及び最小毒性量のうち最小値は、ウサギを用いた発生毒性試験の無毒性 量 49 mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.49 mg/kg 体重を急性参照用量(ARfD)と設定した。

> 0.01 mg/kg 体重/日 ADI

(ADI 設定根拠資料) 慢性毒性/発がん性併合試験②

及び③の総合評価

(動物種) ラット 2年間 (期間) (投与方法) 混餌

(無毒性量) 1.0 mg/kg 体重/日

(安全係数) 100

ARfD

0.49 mg/kg 体重

(ARfD 設定根拠資料) 発生毒性試験

(動物種) ウサギ

妊娠 6~28 日 (期間)

(投与方法) 強制経口 (無毒性量) 49 mg/kg 体重/日

(安全係数) 100

ばく露量については、本評価結果を踏まえた報告を求め、確認することとする。

表 59 各試験における無毒性量及び最小毒性量

		投与量	無毒性量	最小毒性量	
動物種	試験	(mg/kg 体重/日)	(mg/kg 体重/日)	(mg/kg 体重/日)	備考1)
ラット	90 日間 亜急性 毒性試験①	0、300、1,000、 3,000、5,000 ppm 雄:0、17.5、58.7、 177、305 雌:0、19.0、62.7、 186、313	雄:17.5 雌:19.0	雄:58.7 雌:62.7	雄:体重増加抑制等 雌:膀胱上皮過形成等
	2年間 慢性毒性/ 発がん性 併合試験①	0、10、100、1,000 ppm 雄:0、0.365、3.65、 37.1 雌:0、0.432、4.33、 43.4	雄:3.65 雌:4.33	雄:37.1 雌:43.4	雌雄:体重増加抑制等 (発がん性は認められない)
	2年間 慢性毒性/ 発がん性 併合試験②	0、100、1,000、3,000 ppm 雄:0、4.5、45.6、139 雌:0、5.7、58.5、190	雄: — 雌: —	雄:4.5 雌:5.7	雌雄:慢性腎症 (胃、甲状腺及び鼻部に おける腫瘍発生)
	2年間 慢性毒性/ 発がん性 併合試験③	0、5、20、100 ppm 雄:0、0.2、1.0、4.9 雌:0、0.3、1.2、6.1	雄:4.9 雌:6.1	雄:一雌:一	雌雄:毒性所見なし (発がん性は認められない)
		事性/発がん性併合 ③の総合評価	雄:1.0 雌:1.2	雄:4.5 雌:5.7	雌雄:慢性腎症 (胃、甲状腺及び鼻部に おける腫瘍発生)
	2世代繁殖試験	0、100、1,000、3,000 ppm P雄: 0、6.74、67.2、 198 P雌: 0、8.40、84.8、 246 F1雄: 0、8.13、84.0、 283 F1雌: 0、9.58、103、 320	親動物 P雄: 6.74 P雌: 84.8 F1雄: 8.13 F1雌: 103 児動物 P雄: 6.74 P雌: 8.40 F1雄: 8.13 F1雌: 9.58	親動物 P雄: 67.2 P雌: 246 F1雄: 84.0 F1雌: 320 児動物 P雄: 67.2 P雌: 84.8 F1雄: 84.0 F1雌: 103	親動物 雌雄:体重増加抑制 児動物 雌雄:体重増加抑制 (繁殖能に対する影響は 認められない)
	発生毒性 試験	0,49,147,490	母動物:147 胎 児:490	母動物:490 胎 児:-	母動物:体重減少/増加 抑制等 胎児:毒性所見なし (催奇形性は認められない)

動物種	試験	投与量	無毒性量	最小毒性量	備考 ¹⁾	
		(mg/kg 体重/日)	(mg/kg 体重/日)	(mg/kg 体重/日)	,,,, ,,	
マウス	90 日間	0,1,000,3,000,	雄:214	雄:673	雌雄:体重増加抑制等	
	亜急性	6,000 ppm	雌:248	雌:729		
	毒性試験					
		雄:0、214、673、				
		1,290				
		雌:0、248、729、				
		1,490				
	2 年間	0,50,500,2,000	雄:7.13	雄:72.5	雌雄:白内障等	
	発がん性	ppm	雌:8.56	雌:85.6		
	試験				(発がん性は認められな	
		雄:0、7.13、72.5、			(\(\dagger\)	
		304				
		雌:0、8.56、85.6、				
		382				
ウサギ	発生毒性	0,49,147,245	母動物:49	母動物:147	母動物:死亡率の上昇	
	試験		胎 児:49	胎 児:147	等	
					胎児:平均胎児体重減	
					少	
					(催奇形性は認められな	
					\(\cdot\)	
イヌ	1年間	0,1,5,25	雌雄:5	雌雄:25	雌雄: 肝絶対及び比重	
	慢性毒性				量増加等	
	試験					
	•	1	NOAEL: 1.0			
	A	DI	SF: 100			
			ADI : 0.01			
	ADI 設定		ラット2年間慢性毒性/発がん性併合試験②及び③の総合評価			
			校粉 NOADI, 無国			

注)ADI:許容一日摂取量 SF:安全係数 NOAEL:無毒性量

- : 無毒性量又は最小毒性量は設定できなかった。 1) : 備考に最小毒性量で認められた毒性所見の概要を示した。

表 60 単回経口投与等により生ずる可能性のある毒性影響等

			T
動物種	試験	投与量 (mg/kg 体重又は mg/kg 体重/日)	無毒性量及び急性参照用量設定に 関連するエンドポイント ¹⁾ (mg/kg 体重又は mg/kg 体重/日)
ラット	急性毒性 試験 (参照 26)	雄: 1,500、1,740、2,018、2,341、2,716、3,151、3,655、4,239、4,918 雌: 2,018、2,341、2,715、3,150、3,654、4,238、4,917、5,703	雌雄:一 雌雄:不活発化、立毛、流涙
	急性毒性 試験 (参照 96)	雌:2,000	雌:2,000 毒性所見なし
	発生毒性 試験	49、147、490	母動物:147 母動物:体重減少(妊娠 6~9 日)
マウス	急性毒性 試験 (参照 27)	雄:3,000、3,600、4,320、5,184、 6,221 雌:3,600、4,320、5,184、6,221、 7,465	雌雄:一 雌雄:立毛、尾の退色、軟便、皮膚温 の低下
	90 日間 亜急性 毒性試験	雄: 214、673、1,290 雌: 248、729、1,490	雄: 214 雌: 729 雌雄: 体重減少(投与 1 週)
ウサギ	発生毒性 試験	49、147、245	母動物:49 母動物:体重減少/増加抑制(妊娠 6~12 日以降)
	А.Т	ARfD	NOAEL: 49 SF: 100 ARfD: 0.49
	Аг	RfD 設定根拠資料	ウサギ発生毒性試験

ARfD: 急性参照用量 SF: 安全係数 NOAEL: 無毒性量

-:無毒性量は設定されなかった。

1): 最小毒性量で認められた主な毒性所見を記した。

<別紙1:代謝物/分解物略称>

記号	(略称)	化学名
山力		· · · · · · · · · · · · · · · · · · ·
[2]	ブタクロール	3-{(2-[(2,6-ジエチルフェニル)- <i>N</i> (ブトキシメチル)-アミノ]-2-
	システイン抱合体	
[3]	ブタクロール	3-{(2-[(2,6-ジエチルフェニル)- <i>N</i> -(ブトキシメチル)-アミノ]-2-
	チオ酢酸抱合体	オキソエチル)チオ}酢酸
[4]	tert メルカプツー	$3 \cdot [N \cdot \mathcal{T} \setminus F + \mathcal{T} \setminus F \setminus F \setminus F \setminus F]$ 3 · [N \tau \tau \tau \tau \tau \tau \tau \tau
[-]	ル酸	チオ-2-アセチルアミノプロパン酸
[5]	メルカプツール酸	$3-{(2-[(2,6-ジェチルフェニル)-N-(ブトキシメチル)-アミノ]-2-$
[0]	抱合体	オキソエチル)スルフィニル}-2-(アセチルアミノ)プロパン酸
[6]	ヒドロキシ tert	Nアセチル- S [2-[(2,6-ジエチルフェニル)-[(4-
[0]		ヒドロキシブトキシ)メチル]アミノ]-2-オキソエチル-システイン
[7]	オキソ tertメル	N-アセチル- S -[2-(2,6-ジエチルフェニル)-[(4-オキソブトキシ)
	カプツール酸	メチル]アミノ]-2-オキソエチル-システイン
[9]	_	N-(ブトキシメチル)- N -(2,6-ジエチルフェニル)-2-(メチルチオ)
[9]		アセトアミド
[10]	ジスルフィド	
[10]	二量体	_
[11]	<i>tert</i> メチルスル	<i>N</i> -(ブトキシメチル)- <i>N</i> -(2,6-ジエチルフェニル)-2-
[11]	ホキシド	メチルスルフィニルアセトアミド
[10]	<i>tert</i> メチルスル	<i>N</i> -(ブトキシメチル)- <i>N</i> -(2,6-ジエチルフェニル)-2-
[13]	ホン	メチルスルホニルアセトアミド
[14]	sec ブタクロール	2-クロロ- <i>N</i> -(2,6-ジエチルフェニル)アセトアミド
[1 =]	secメルカプツー	3-[(2-[2,6-(ジエチルフェニル)アミノ]-2-オキソエチル)チオ]-2-
[15]	ル酸	(アセチルアミノ)プロパン酸
[1.0]	ヒドロキシ sec	3-[(2-[6-エチル-2-(1-ヒドロキシエチル)フェニル)アミノ]-2-
[16]	メルカプツール酸	オキソエチル]チオ]-2-(アセチルアミノ)プロパン酸
[1,7]		N-[6 -エチル- 2 -(1 -ヒドロキシエチル)フェニル]- 2 -(メチルチオ)
[17]	_	アセトアミド
[4.0]	ヒドロキシ sec	N-[6-エチル-2-(1-ヒドロキシエチル)フェニル]-2-
[18]	スルホキシド	(メチルスルフィニル)アセトアミド
[4.0]	secメチルスル ホキシド	N-(2,6-ジエチルフェニル)-2-(メチルスルフィニル)アセトアミド
[19]	ホキシド	, and the second
[0.0]	sec メチルスル	<i>N</i> -(2,6-ジエチルフェニル)-2-(メチルスルホニル)アセトアミド
[20]	ホン	
[21]	_	2,6-ジエチルアニリン
[col	フェノールスル	4-アミノ-3,5-ジエチルフェニル硫酸
[22]	フェート	,
[60]	ヒドロキシ sec	N-[6-エチル-2-(1-ヒドロキシエチル)フェニル]-2-
[23]	メチルスルホン	(メチルスルホニル)アセトアミド
[0.4]		N-[6-エチル-2-(1- O グルクロニル)フェニル]-2-(メチルチオ)
[24]	_	アセトアミド
[25]	スルホン酸	N-(2,6-ジエチルフェニル)-2-スルホアセトアミド
[26]	_	<i>N</i> -(ブトキシメチル)- <i>N</i> -(2,6-ジエチルフェニル)アセトアミド
	ノルクロロ sec	N-(2,6-ジエチルフェニル)アセトアミド
[27]	ブタクロール	

記号	(略称)	化 学 名
[00]		<i>N</i> -(ブトキシメチル)- <i>N</i> -(2,6-ジエチルフェニル)-2-
[28]	_	ヒドロキシアセトアミド
[30]		2-クロロ- <i>N</i> -(2,6-ジエチルフェニル)- <i>N</i> -
[30]	_	カルボメトキシメチルアセトアミド
[32]	_	N- $(2,6$ -ジエチルフェニル $)$ - N -カルボメトキシメチル-オキサミン酸
[33]	_	<i>N</i> -(2,6-ジエチルフェニル)-2-ヒドロキシアセトアミド
[34]	オキサミン酸	N- $(2,6$ -ジエチルフェニル $)$ オキサミン酸
[35]	配糖体	<i>N</i> -(2,6-ジエチルフェニル) -2-グルコピラノシルアセトアミド
		N -(ブトキシメチル)-3- $\{[2-[6-エチル-2-(1-ヒドロキシエチル)$
[38]	_	フェニル)アミノ]-2-オキソエチル]チオ}-2-(アセチルアミノ)-
		プロパン酸
	ヒドロキシ sec	$N \cdot [S \cdot [2 \cdot [(6 \cdot \text{エチル-}2 \cdot (1 \cdot \text{ヒドロキシエチル}) フェニル) アミノ] \cdot 2 \cdot$
	グルタチオン抱合	オキソエチル]- <i>N</i> -L-γ-グルタミル-L-システイニル]グリシン γ
	体	
	,	1-クロロ・N-[6-エチル・2-(1-ヒドロキシルエチル)フェニル]
[40]	ブタクロールグル	アセトアミドグルクロニド;1-[2-[(クロロアセチル)アミノ]-3-
	クロニド	エチルフェニル]エチル-8-D-グルコピラノシドウロン酸
	2-ヒドロキシ sec	2-クロロ· <i>N</i> ·[6·エチル·2·(2·ヒドロキシルエチル)フェニル]
[41]	ファクロールクル クロニド	アセトアミドグルクロニド;2-[2-[(クロロアセチル)アミノ]-3- エチルフェニル]エチル-β-D-グルコピラノシドウロン酸
		$N \cdot [S \cdot [2 \cdot [(2 \cdot x + y - y - y \cdot x + y - y - y - y - y - y - y - y - y - y$
[42]	タチオン抱合体	
		$S^{-}[2\cdot[(2,6\cdot)] + V + V + V + V + V + V + V + V + V + $
[43]	ングノイン10日件	システイン
	ジヒドロ tert グル	
[44]	タチオン抱合体	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
F . ~1		N[S[2-[(2,6-ジェチルフェニル)アミノ]-2-オキソエチル]- $N:L-y-$
[45]	抱合体	グルタミル-L-システイニル]グリシン
[40]	sec システイニル	N-[S -[2-[(2,6-ジェチルフェニル)アミノ]-2-オキソエチル]-L-
[46]	グリシン抱合体	システイニル]グリシン
	ジヒドロ tertメ	N- $(2,6$ -ジエチルフェニル)- N - $($ ジヒドロキシブトキシ)メチル $]$ - 2 -
[47]	チルスルホキシド	(メチルスルフィニル)アセトアミド
		正確な水酸基の位置は不明
		N-[6-エチル-2-(1-ヒドロキシエチル)フェニル]- N
[48]	tert メチルスル	[(ジヒドロキシブトキシ)メチル]-2-(メチルスルフィニル)
[10]	ホキシド	アセトアミド
		正確な水酸基の位置は不明
[49]		正確な構造は不明
	カプツール酸	
[50]		N-アセチル- S -[2-[(2-エテニル-6-エチルフェニル)アミノ]-2-
		オキソエチル]·L·システイン 2·[2·[(クロロアセチル)(オキソブトキシメチル)アミノ]·3·
[51]	, , , , , , , , , , , , , , , , , , , ,	2-[2-[(クロロノセナル)(オキソノトキシメナル)/ ミノ]-3- エチルフェニル]エチル-β-D-グルコピラノシドウロン酸
	tert グルクロート tert グルタチオン	
[52]	tert クルタテオン ヒドロキシ酸	11.7唯/よ1冉/巳/よ/下切
	tert グルタチオン	正確か構造け不明
[53]	tert クルタテオン 酸	11.1年/よ1冉炟/よハヴ
	EX	

記号	(略称)	化 学 名
[54]	オキソ tert グルタ	N-[S -[2-[(オキソブトキシメチル)(2,6-ジエチルフェニル)アミノ]-2-
[94]	チオン抱合体	オキソエチル]- <i>N</i> -L-γ-グルタミル-L-システイニル]グリシン
		[(クロロアセチル)(2,6-ジエチルフェニル)アミノ]メチル-ß-D-
[55]		グルコピラノシドウロン酸; 2 -クロロ- N ($2,6$ -ジエチルフェニル)- N -
		(ヒドロキシメチル)アセトアミドグルクロニド
		N-[2,6-ジエチルフェニル]- N -[(ジヒドロキシブトキシ)メチル]-2-
[56]	メチルスルホン	(メチルスルホニル)アセトアミド
		ブトキシ基上の水酸基の正確な位置は不明
	ジヒドロキシジオ	
[57]	キソ tert ノルク	_
	ロロブタクロール	
	tert メチルスル	4-[[(2,6-ジエチルフェニル)(メチルスルホニル)アセチル]アミノ]
[58]	ホンヒドロキシ酸	メトキシ]-2-ヒドロキシ酪酸
		ブトキシ基上の水酸基の正確な位置は不明
[59]	tert グルタチオン	N - [S - [2 - [(ブトキシメチル)(2,6 - ジエチルフェニル)アミノ] - 2 -
[00]	抱合体	オキソエチル]- <i>N</i> -L-γ-グルタミル-L-システイニル]グリシン
		4-[[(2,6-ジエチルフェニル)(メチルチオ)アセチル]アミノ]
[60]	フィドヒドロキシ	メトキシ]-2-ヒドロキシ酪酸
		ブトキシ基上の水酸基の正確な位置は不明
[61]		N - [S - [2 - [(ブトキシ)(2,6 - ジエチルフェニル)アミノ] - 2 -
[01]	グリシン抱合体	オキソエチル]-L-システイニル]グリシン
[62]	スルホキシド	_
[04]	2 量体	

-:参照資料中に記載なし

<別紙2:検査値等略称>

略称	東 <u>国</u> 祖寺略称 / 名称
ACh	アセチルコリン
ai	有効成分量(active ingredient) アルブミン
Alb	アルカリホスファターゼ
ALP	アラニンアミノトランスフェラーゼ
ALT	/ ノーン/ ミノトノンスノエノーと [=グルタミン酸ピルビン酸トランスアミナーゼ(GPT)]
AUC	薬物濃度曲線下面積
BCF	生物濃縮係数
BrdU	5-ブロモ-2'-デオキシウリジン
BUN	血液尿素窒素
ChE	コリンエステラーゼ
C_{max}	最高濃度
CMC	カルボキシメチルセルロース
Cre	クレアチニン
D.Bil	直接ビリルビン
DMSO	ジメチルスルホキシド
GGT	γ-グルタミルトランスフェラーゼ [= γ-グルタミルトランスペプチダーゼ(γ-GTP)]
Glob	グロブリン
Glu	グルコース (血糖)
GSH	還元型グルタチオン
GSSG	酸化型グルタチオン
Hb	ヘモグロビン量 (血色素量)
His	ヒスタミン
Ht	ヘマトクリット値
LC_{50}	半数致死濃度
LD_{50}	半数致死量
Lym	リンパ球数
MNNG	N-メチル- N -ニトロ- N -ニトロソグアニジン
PCNA	増殖性細胞核抗原
PEC	環境中予測濃度
PEG	ポリエチレングリコール
PHI	最終使用から収穫までの日数
RBC	赤血球数
$T_{1/2}$	消失半減期

略称	名称
T_3	トリヨードサイロニン
T_4	サイロキシン
TAR	総投与(処理)放射能
T.Bil	総ビリルビン
T.Chol	総コレステロール
TG	トリグリセリド
T_{max}	最高濃度到達時間
TP	総蛋白質
TRR	総残留放射能
TSH	甲状腺刺激ホルモン
UDPGT	ウリジン二リン酸グルクロニルトランスフェラーゼ
WBC	白血球数

<別紙3:作物残留試験成績>

作物名	試験		回 数 (回)	PHI (目)	残留值(mg/kg)			
(分析部位)	は場数	使用量 (kg ai/ha)			ブタクロール			
実施年度						析機関	社内分析機関	
				150	最高値	平均値	最高値	平均値
	1	1.6^{EC}	$\frac{1}{1}$	150 160	<0.005 <0.005	<0.005 <0.005	<0.01 <0.01	<0.01 <0.01
	1	2.1000	1	127	< 0.005	<0.005	<0.01	<0.01
	1	2.13^{EC}	1	137	< 0.005	< 0.005	<0.01	< 0.01
L 15	1	$3.2^{ m EC}$	1	150	< 0.005	< 0.005	< 0.01	< 0.01
水稲(オツ)	1		1	160	< 0.005	< 0.005	<0.01	<0.01
(玄米) 1976 年度	1	1.6 ^{EC}	2	137	< 0.005	< 0.005	<0.01	< 0.01
1370 平反	1	2.13^{EC}	2	147	< 0.005	< 0.005	< 0.01	< 0.01
	1	1.6EC	2	127	<0.005	< 0.005	<0.01	<0.01
		+		137 137	<0.005 <0.005	<0.005 <0.005	<0.01 <0.01	<0.01 <0.01
	1	2.0^{G}	2	$\frac{137}{147}$	<0.005	< 0.005	<0.01	<0.01
水稲	1		1	139	< 0.005	< 0.005	< 0.005	< 0.005
(玄米) 1997 年度	1	$1.6^{ m EC}$	1	118	< 0.005	< 0.005	< 0.005	< 0.005
	1	4.8 ^{EC} + 3.0 ^G +	3	64	< 0.005	< 0.005	< 0.005	< 0.005
水 稲 (玄米)	1	$2.0^{ m G}$	3	82	< 0.005	< 0.005	< 0.005	< 0.005
2000 年度	1	$4.8^{EC} + 1.5^{G} +$	3	64	< 0.005	< 0.005	< 0.005	< 0.005
	1	$1.5^{ m G}$	3	82	< 0.005	< 0.005	< 0.005	< 0.005
水稲	1		2	77			< 0.01	< 0.01
(玄米)	1	1.6EC	2	95			< 0.01	< 0.01
2010 年度	1		3	76			< 0.01	< 0.01
水稲	1		2	77			< 0.01	< 0.01
(籾米)	1	1.6^{EC}	2	95			< 0.01	< 0.01
2010 年度	1		3	76			< 0.01	< 0.01
	1	$1.6^{ m EC}$	1	150	< 0.02	< 0.02	< 0.02	< 0.02
	1		1	160	< 0.02	< 0.02	< 0.02	< 0.02
	1	2.13^{EC}	1	127	< 0.02	< 0.02	< 0.02	< 0.02
	1	2.10	1	137	< 0.02	< 0.02	< 0.02	< 0.02
-la 1507	1	3.2 ^{EC}	1	150	< 0.02	< 0.02	< 0.02	< 0.02
水 稲 (稲わら)	1		1	160	< 0.02	< 0.02	< 0.02	< 0.02
1976 年度	1	1.6EC+	2	137	< 0.02	< 0.02	< 0.02	< 0.02
	1	2.13 ^{EC}	2	147	< 0.02	< 0.02	< 0.02	< 0.02
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	2	127	< 0.02	< 0.02	< 0.02	< 0.02	
			_	137	< 0.02	< 0.02	< 0.02	< 0.02
		2.0 ^G	2	137	< 0.02	< 0.02	< 0.02	< 0.02
				147	< 0.02	< 0.02	< 0.02	< 0.02

II: Hm 57	試験 ほ場 数	使用量 (kg ai/ha)	回 数 (回)	PHI (目)	残留值(mg/kg)			
作物名 (分析部位) 実施年度					ブタクロール			
					公的分析機関		社内分析機関	
					最高値	平均値	最高値	平均値
水 稲 (稲わら) 1997 年度	1	$1.6^{ m EC}$	1	139	< 0.02	< 0.02	< 0.02	< 0.02
	1		1	118	< 0.02	< 0.02	< 0.02	< 0.02
	1	$\begin{array}{c} 4.8^{\rm EC} + \\ 3.0^{\rm G} + \\ 2.0^{\rm G} \\ 4.8^{\rm EC} + \\ 1.5^{\rm G} + \\ 1.5^{\rm G} \end{array}$	3	64	< 0.02	< 0.02	< 0.02	< 0.02
水 稲 (稲わら) 2000 年度	1		3	82	< 0.02	< 0.02	< 0.02	< 0.02
	1		3	64	< 0.02	< 0.02	< 0.02	< 0.02
	1		3	82	< 0.02	< 0.02	< 0.02	< 0.02
水 稲 (稲わら) 2010 年度	1	1.6 ^{EC}	2	77			< 0.05	< 0.05
	1		2	95			< 0.05	< 0.05
	1		3	76			0.10	0.09

<参考: 2,6-ジエチルアニリン系代謝物>

作物名	/ 土場	使用量	回 数 (回)	PHI (目)	残留值(mg/kg) 2,6-DEA			
(分析部位) 実施年度		(kg ai/ha)			公的分析機関		社内分析機関	
					最高値	平均値	最高値	平均値
水 稲 (玄米)	1	$1.6^{ m EC}$	1	139	< 0.01	<0.01	< 0.01	< 0.01
1997 年度	1		1	118	< 0.01	< 0.01	< 0.01	< 0.01
水稲(彩わら)	1	1 1.6 ^{EC}	1	139	< 0.04	< 0.04	< 0.04	< 0.04
(稲わら) 1997 年度	1		1	118	0.05	0.04	0.10	0.10

注) EC: 乳剤 G: 粒剤 ・全てのデータが定量限界未満の場合は定量限界値の平均に<を付して記載した。

注) EC: 乳剤
・全てのデータが定量限界未満の場合は定量限界値の平均に<を付して記載した。
・残留値は代謝物のブタクロール換算値とブタクロールの合計
換算係数 ブタクロール/代謝物 2,6-DEA=2.09

<参照>

- 1 農薬抄録ブタクロール (除草剤):日本モンサント株式会社、平成 19 年 8 月 3 日改訂、一部公表
- 2 ラットにおける経口投与代謝試験: モンサント環境衛生研究所(米国)、1998年、 未公表
- 3 ラットにおける経口投与代謝試験:モンサント環境衛生研究所(米国)、1982、 1983、1994年、未公表
- 4 ラットにおける静脈内投与代謝試験:モンサント環境衛生研究所(米国)、1987 年、未公表
- 5 アカゲザルにおける単回静脈内投与試験:インターナショナル・リサーチ・アンド・ディベロップメント・コーポレーション(米国)、1984年、未公表
- 6 アカゲザルにおける静脈内投与による代謝試験:ニューメキシコ州立大学霊長類研究所(米国)、1986年、未公表
- 7 Sprague-Dawley 系、Fischer 系、Long-Evans 系ラット及び CD-1 系マウスにおける分布及び排泄の比較 (GLP 対応): モンサント環境衛生研究所 (米国)、1992 年、未公表
- 8 In vitro における血液結合性に関する種間比較:モンサント・アグリカルチュラル・プロダクツ・カンパニー研究部(米国)、1985年、未公表
- 9 稲における代謝: モンサント・アグリカルチュラル・カンパニー研究所(米国)、 1979 年、未公表
- 10 稲における代謝: PTRL ウエスト社(米国)、1998年、未公表
- 11 好気的湛水土壤中運命試験(GLP 対応):日産化学工業(株)、2006 年、未公表
- 12 好気的及び嫌気的土壌中運命試験:モンサント・アグリカルチュラル・プロダクツ・カンパニー研究部(米国)、1978年、未公表
- 13 土壌吸着試験: モンサント・アグリカルチュラル・プロダクツ・カンパニー研究 部 (米国)、1978 年、未公表
- 14 土壌吸脱着試験: モンサント・アグリカルチュラル・プロダクツ・カンパニー研究部 (米国)、1979 年、未公表
- 15 土壌吸着試験:(財)日本食品分析センター、1990年、未公表
- 16 加水分解運命:モンサント・アグリカルチュラル・プロダクツ・カンパニー研究部(米国)、1978年、未公表
- 17 加水分解運命:モンサント・アグリカルチュラル・プロダクツ・カンパニー研究部(米国)、1979年、未公表
- 18 水中光分解運命試験(GLP 対応):日産化学工業(株)、2006 年、未公表
- 19 ブタクロールの土壌残留試験成績:日本農薬(株)、1975年、1976年、未公表
- 20 ブタクロールの土壌残留試験成績:三共(株)、1975 年、1976 年、未公表
- 21 ブタクロールの土壌残留試験成績:北興化学工業(株)、1975年、1976年、未公表
- 22 ブタクロールの土壌残留試験成績:(株)化学分析コンサルタント、2000 年、未公

表

- 23 ブタクロールの作物残留試験成績:(財)日本食品分析センター、1976 年、1997 年、 2000 年、未公表
- 24 ブタクロールの作物残留試験成績: 三共(株)農薬研究所、1976 年、1997 年、2000 年、未公表
- 25 ブタクロールの薬理試験 (GLP 対応) : (株)実医研、1991 年、未公表
- 26 ラットにおける急性経口、皮下、腹腔内毒性試験:(財)残留農薬研究所、1980年、 未公表
- 27 マウスにおける急性経口、皮下、腹腔内毒性試験:(財)残留農薬研究所、1976年、 未公表
- 28 ウサギにおける急性経皮毒性試験:バイオダイナミックス社(米国)、1979 年、 未公表
- 29 ラットにおける急性吸入毒性試験:バイオダイナミックス社(米国)、1982 年、 未公表
- 30 ラットにおける急性吸入毒性試験(GLP 対応): モンサント安全性評価ニューステッド研究所、1998 年、未公表
- 31 ウサギにおける皮膚刺激性試験:バイオダイナミックス社(米国)、1982 年、未公表
- 32 ウサギにおける眼刺激性試験:バイオダイナミックス社(米国)、1979 年、未公表
- 33 モルモットを用いた皮膚感作性試験:バイオダイナミックス社(米国)、1983年、未公表
- 34 ラットを用いた飼料混入投与による亜急性毒性試験 (GLP 対応): (財)残留農薬研究所、1987年、未公表
- 35 ラットを用いた飼料混入投与による亜急性毒性試験:バイオダイナミックス社(米国)、(財)残留農薬研究所、1980年、未公表
- 36 マウスを用いた飼料混入投与による亜急性毒性試験:バイオダイナミックス社(米国)、1980年、未公表
- 37 ウサギを用いた 21 日間経皮毒性試験: インターナショナル・リサーチ・アンド・ ディベロップメント・コーポレーション (米国)、1982 年、未公表
- 38 犬を用いたカプセル投与による 1 年間反復投与毒性試験 (GLP 対応) : (財)残留 農薬研究所、1987 年、未公表
- 39 ラットを用いた飼料混入投与による慢性毒性/発がん性併合試験(GLP対応): (財)残留農薬研究所、1990年、未公表
- 40 ラットを用いた飼料混入投与による慢性毒性/発がん性併合試験:バイオダイナミックス社(米国)、(財)残留農薬研究所、1983年、未公表
- 41 ラット胃組織切片の遡及的再評価 (GLP 対応): アメリカン・ヘルス・ファンデーション (米国)、1994 年、未公表

- 42 ラットを用いた飼料混入投与による慢性毒性/発がん性併合試験:バイオダイナミックス社(米国)、(財)残留農薬研究所、1988年、未公表
- 43 マウスを用いた飼料混入投与による慢性毒性/発がん性併合試験: ヘイゼルトン研究所(米国)、(財)残留農薬研究所、1985年、未公表
- 44 ラットを用いた繁殖試験:バイオダイナミックス社(米国)、1984年、未公表
- 45 ラットにおける催奇形性試験: インターナショナル・リサーチ・アンド・ディベロップメント・コーポレーション (米国)、1980 年、未公表
- 46 ウサギにおける催奇形性試験: インターナショナル・リサーチ・アンド・ディベロップメント・コーポレーション (米国)、1980年、未公表
- 47 細菌を用いた DNA 修復試験(Rec-Assay): (財)残留農薬研究所、1980 年、未公表
- 48 細菌を用いた復帰変異原性試験 (8-1):(財)残留農薬研究所、1980年、未公表
- 49 細菌を用いた復帰変異原性試験 (8-3): モンサント環境衛生研究所 (米国)、1979 年、未公表
- 50 細菌を用いた復帰変異原性試験 (8-4): モンサント環境衛生研究所 (米国)、1981 年、未公表
- 51 細菌を用いた復帰変異原性試験 (8-12): モンサント・リサーチ・コーポレーション (米国)、1980年、未公表
- 52 チャイニーズハムスター卵巣由来細胞形ヒポキサンチンーグアニンーフォスフォリボシル転位酵素 (CHO/HGPRT) を用いた *in vitro* 遺伝子突然変異試験:モンサント環境衛生研究所(米国)、1983 年、未公表
- 53 初代培養ラット肝細胞を用いた *in vivo-in vitro* 不定期 DNA 合成誘発試験:スタンフォード・リサーチ・インスティチュート・インターナショナル(米国)、1984年、未公表
- 54 ラット骨髄細胞を用いた *in vivo* 細胞遺伝学的試験: ヘイゼルトン研究所(米国)、 1983 年、未公表
- 55 細菌を用いた復帰変異原性試験(8-2): モンサント環境衛生研究所(米国)、1979 年、未公表
- 56 細菌を用いた復帰変異原性試験 (8-5): モンサント・リサーチ・コーポレーション (米国)、1981年、未公表
- 57 細菌を用いた復帰変異原性試験 (8-6): モンサント・リサーチ・コーポレーション (米国)、1981 年、未公表
- 58 細菌を用いた復帰変異原性試験 (8-7): モンサント・リサーチ・コーポレーション (米国)、1981 年、未公表
- 59 細菌を用いた復帰変異原性試験 (8-8): モンサント・リサーチ・コーポレーション (米国)、1981年、未公表
- 60 細菌を用いた復帰変異原性試験 (8-9): モンサント・リサーチ・コーポレーション (米国)、1981 年、未公表

- 61 細菌を用いた復帰変異原性試験 (8-10): モンサント・リサーチ・コーポレーション (米国)、1980 年、未公表
- 62 細菌を用いた復帰変異原性試験 (8-11): モンサント・リサーチ・コーポレーション (米国)、1980 年、未公表
- 63 細菌を用いた復帰変異原性試験 (8-13): モンサント・リサーチ・コーポレーション (米国)、1980年、未公表
- 64 細菌を用いた復帰変異原性試験 (8-14): モンサント・リサーチ・コーポレーション (米国)、1980年、未公表
- 65 細菌を用いた復帰変異原性試験 (8-15): モンサント・リサーチ・コーポレーション (米国)、1980年、未公表
- 66 細菌を用いた復帰変異原性試験 (8-16): モンサント・リサーチ・コーポレーション (米国)、1980年、未公表
- 67 細菌を用いた復帰変異原性試験 (8-17) (GLP 対応): モンサント・リサーチ・コーポレーション (米国)、1994 年、未公表
- 68 チャイニーズハムスター卵巣由来細胞における *in vitro* 染色体異常試験 (GLP 対応): ヘイゼルトン・ワシントン社 (米国)、1994 年、未公表
- 69 マウスを用いた小核試験:スタンフォード・リサーチ・インスティチュートイン ターナショナル(米国)、1984年、未公表
- 70 マウスにおける優性致死試験: インターナショナル・リサーチ・アンド・ディベロップメント・コーポレーション (米国)、1984 年、未公表
- 71 ブタクロール植物代謝物 19 (CP91431)、20 (CP91432) 及びアラクロール植物代謝物 (CP76095、CP76096、CP76097) の細菌を用いた復帰突然変異試験: モンサント環境衛生研究所(米国)、1985 年、未公表
- 72 ラットを用いた二段階発がん試験 (GLP 対応): モンサント環境衛生研究所 (米国)、(株)大雄会医科学研究所、1994年、未公表
- 73 ラットにおける催腫瘍性機構に関する研究(GLP 対応): モンサント環境衛生研究所(米国)、アメリカン・ヘルス・ファンデーション(米国)、(株)大雄会医科学研究所、1994 年、未公表
- 74 雌ラットにおける胃壁細胞の定量:愛知県がんセンター研究所、1996年、未公表
- 75 ラット胃及び鼻部組織における細胞増殖に対する影響(GLP対応): モンサント環境衛生研究所(米国)、アメリカン・ヘルス・ファンデーション(米国)、1994年、未公表
- 76 ラット胃粘膜の細胞増殖に対する影響 (GLP 対応) : (財)残留農薬研究所、1994 年、未公表
- 77 マウス胃粘膜の細胞増殖に対する影響 (GLP 対応) : モンサント環境衛生研究所 (米国)、アメリカン・ヘルス・ファンデーション (米国)、1994 年、未公表
- 78 アカゲザルの胃における細胞増殖に対する影響(GLP 対応):ホワイト・サンド・ リサーチ・センター(米国)、アメリカン・ヘルス・ファンデーション(米国)、

1995年、未公表

- 79 ラット腺胃及び肝におけるグルタチオンに対する影響 (GLP 対応): モンサント 環境衛生研究所 (米国)、1993 年、未公表
- 80 ブタクロール要望事項に対する回答資料:日本モンサント株式会社、2007年、未公表
- 81 ブタクロールの魚介類における最大推定残留値に係る資料
- 82 食品健康影響評価について (平成 19 年 10 月 12 日付け厚生労働省発食安第 1012003 号)
- 83 農薬抄録ブタクロール(除草剤):日本モンサント株式会社、平成 21 年 1 月 19 日改訂、一部公表
- 84 ブタクロールの食品健康影響評価に係る資料追加提出について:日本モンサント株式会社、2009年、未公表
- 85 農薬抄録ブタクロール(除草剤):日本モンサント株式会社、平成 22 年 2 月 17 日改訂、一部公表
- 86 雌の SD ラットにおけるブタクロールによる腫瘍発生機序解明試験 (GLP 対応): アメリカンヘルスファンデーション、1994 年、未公表
- 87 ブタクロール長期投与 Sprague-Dawley 系ラットにおける胃病理組織学的検討 (GLP 対応): (株) 大雄会医科学研究所、1995 年、未公表
- 88 クロロアセトアニリド系除草剤アラクロールおよびブラクロールの投与によりラットにおいて誘発された胃腫瘍について合意された診断とその発生機序の基本的枠組み:日本モンサント株式会社、2010年、未公表
- 89 食品安全委員会:農薬評価書 アラクロール、2011年
- 90 食品健康影響評価の結果の通知について(平成23年8月25日付け府食第694号)
- 91 食品、添加物等の規格基準 (昭和 34 年厚生省告示第 370 号) の一部を改正する件 (平成 24 年 12 月 28 日付け平成 24 年厚生労働省告示第 595 号)
- 92 再評価を受けるべき農薬の範囲を指定した件(令和元年9月9日付け農林水産省告示第804号)
- 93 食品健康影響評価について (令和4年9月28日付け4消安第3356号)
- 94 試験成績の概要及び考察(ブタクロール):日産化学株式会社、2021年、一部公表
- 95 ブタクロールの作物残留試験成績: JA 全農 営農・技術センター、2010 年、未 公表
- 96 Butachlor: Acute Oral Toxicity Study in Rats(GLP 対応): 株式会社ボゾリサーチセンター、2021 年、未公表
- 97 Butachlor: A bacterial reverse mutation test (GLP 対応) : 株式会社ボゾリサーチセンター、2021 年、未公表
- 98 ブタクロール公表文献報告書(2021年):日産化学株式会社
- 99 Yoshida M: Chloroacetanilide herbicide-induced rat enterochromaffin cell

tumors: a case study within the context of the IPCS framework, for analyzing the relevance of a cancer mode of action for humans: JOURNAL OF TOXICOLOGIC PATHOLOGY, 34(3), 213-222, 2021

100食品安全委員会:農薬評価書 ブタクロール、2011年

101 ブタクロール公表文献報告書(追補)(2023 年): 日産化学株式会社